IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6605-d655448.html
   My bibliography  Save this article

Experimental Research on Detonation Cell Size of a Purified Biogas-Oxygen Mixture

Author

Listed:
  • Stanislaw Siatkowski

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

  • Krzysztof Wacko

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

  • Jan Kindracki

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

Abstract

Interest in alternative and renewable energy sources has risen significantly in recent years. Biogas is a prime example of a promising, alternative fuel that might be a possible replacement for fossil fuels. It is a mixture consisting mainly of CH 4 and CO 2 with various additions. Biogas is easily storable and as such is a more reliable and stable source of energy than solar and wind sources, which suffer from unreliability due to their dependence on weather conditions. In this paper, the authors report experimental results of detonation of a biogas-oxygen mixture. The composition of the biogas was 70% CH 4 + 30% CO 2 and the experiments were carried out for a range of equivalence ratios (Φ = 0.5 ÷ 1.5) and initial pressures (0.6 ÷ 1.6 bar). The aim of the research was to analyze the cellular structure of detonation. The soot foil technique was used to determine the width of the detonation cells (λ). The conducted experiments and subsequent analysis of the detonation cell size confirm that both the increase in the initial pressure of the mixture or move away from stoichiometric (Φ = 1) composition is accompanied by a decrease in the width of the detonation cell. The authors also argue that due to the unstable cellular structure of the detonation, it is insufficient to report only the average cell size. Instead, the researchers propose more detailed statistical description assured values.

Suggested Citation

  • Stanislaw Siatkowski & Krzysztof Wacko & Jan Kindracki, 2021. "Experimental Research on Detonation Cell Size of a Purified Biogas-Oxygen Mixture," Energies, MDPI, vol. 14(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6605-:d:655448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    2. Xie, Qiaofeng & Wen, Haocheng & Li, Weihong & Ji, Zifei & Wang, Bing & Wolanski, Piotr, 2018. "Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition," Energy, Elsevier, vol. 151(C), pages 408-419.
    3. Baccioli, A. & Antonelli, M. & Frigo, S. & Desideri, U. & Pasini, G., 2018. "Small scale bio-LNG plant: Comparison of different biogas upgrading techniques," Applied Energy, Elsevier, vol. 217(C), pages 328-335.
    4. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    5. Gupta, K.K. & Rehman, A. & Sarviya, R.M., 2010. "Bio-fuels for the gas turbine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2946-2955, December.
    6. Rodrigues, Monica & Walter, Arnaldo & Faaij, André, 2003. "Co-firing of natural gas and Biomass gas in biomass integrated gasification/combined cycle systems," Energy, Elsevier, vol. 28(11), pages 1115-1131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Esfandiyar Naeiji & Alireza Noorpoor & Hossein Ghanavati, 2022. "Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    3. Parisa Kazemiani-Najafabadi & Ehsan Amiri Rad, 2020. "Optimizing the bio/natural gas ratio in a dual-fuel gas turbine (DFGT) through energy-economic, environmental, and renewability analyses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5371-5386, August.
    4. Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom & Park, Jung Keuk, 2012. "The effect of firing biogas on the performance and operating characteristics of simple and recuperative cycle gas turbine combined heat and power systems," Applied Energy, Elsevier, vol. 93(C), pages 215-228.
    5. Kamila Klimek & Magdalena Kapłan & Serhiy Syrotyuk & Nikolay Bakach & Nikolay Kapustin & Ryszard Konieczny & Jakub Dobrzyński & Kinga Borek & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & Grzeg, 2021. "Investment Model of Agricultural Biogas Plants for Individual Farms in Poland," Energies, MDPI, vol. 14(21), pages 1-30, November.
    6. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Wantz, Eliot & Lemonnier, Mathis & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2023. "Innovative high-pressure water scrubber for biogas upgrading at farm-scale using vacuum for water regeneration," Applied Energy, Elsevier, vol. 350(C).
    8. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    9. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    10. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    11. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    12. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    13. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    14. Vela-García, Nicolas & Bolonio, David & Mosquera, Ana María & Ortega, Marcelo F. & García-Martínez, María-Jesús & Canoira, Laureano, 2020. "Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel," Applied Energy, Elsevier, vol. 268(C).
    15. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    17. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    18. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    19. Alberto Benato & Alarico Macor, 2021. "Costs to Reduce the Human Health Toxicity of Biogas Engine Emissions," Energies, MDPI, vol. 14(19), pages 1-17, October.
    20. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6605-:d:655448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.