IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6560-d654638.html
   My bibliography  Save this article

Solid Biofuels Scenarios from Rural Agricultural and Forestry Residues for Mexican Industrial SMEs

Author

Listed:
  • Oscar Ruíz-Carmona

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, Col. Centro, Temixco 62580, Morelos, Mexico)

  • Jorge M. Islas-Samperio

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, Col. Centro, Temixco 62580, Morelos, Mexico)

  • Lourdes Larrondo-Posadas

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, Col. Centro, Temixco 62580, Morelos, Mexico)

  • Fabio Manzini

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, Col. Centro, Temixco 62580, Morelos, Mexico)

  • Genice K. Grande-Acosta

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, Col. Centro, Temixco 62580, Morelos, Mexico)

  • Christian Álvarez-Escobedo

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, Col. Centro, Temixco 62580, Morelos, Mexico)

Abstract

In Mexico, as in the rest of the world, the industry sector is frequently highly dependent on fossil fuels; in addition, energy transformation processes are not very efficient and scarcely oriented towards climate change mitigation. Given these facts, solid biofuels (SBFs) from agricultural and forestry residues from rural areas may represent an alternative that contributes to the decarbonization of the industrial sector, especially in Small- and Medium-Sized Enterprises (SMEs). From an economic and climate change mitigation perspective, this study evaluates harnessing SBFs in SMEs related to lime, bricks, dairy products, craft beer, and artisanal mezcal (a well-known Mexican distilled alcoholic beverage), products mainly manufactured in rural areas of Mexico. For each of these SMEs, we constructed two energy consumption scenarios that span from 2018 to 2050. On the one hand, a baseline scenario (BS) that reflects the behaviour of historical energy consumption in Mexico and, on the other hand, an alternative scenario (AS) that proposes the use of SBFs with modern and efficient technologies and sustainable inputs of agricultural and forestry residues originated mainly from rural areas. According to our results, a comparison between the two scenarios reveals that two out of five SMEs industrial niches studied, appear with mitigation costs in the AS namely brick kilns, and limekilns SMEs that have mitigation costs of 9.99 and 19.74 USD/tCO 2e , respectively, primarily due to the high investment cost of the new MK2 kilns and the relatively high cost of pellets, respectively. Since these niches have high mitigation potentials (7.77 MtCO 2e for brick kilns and 2.83 MtCO 2e for limekilns), their implementation requires adequate incentives and financing. On the contrary, the dairy, craft beer, and mezcal SMEs niches have negative mitigation costs (−14.30, −10.68, −0.98) USD/tCO 2e , mainly due to the high savings in the cost of fossil fuels and their materialization, especially for the mezcal niche which has a mitigation potential of 2.97 MtCO 2e , requires only an adequate regulatory and normative framework. We conclude that using commercial SBFs (pellets, briquettes, and traditional firewood) in SMEs niches contribute to generating formal markets with adequate distribution channels, both for SBFs and sustainable residual biomass inputs (residual firewood, agave bagasse, and spent barley grain). This alternative scenario also promotes the creation of green jobs in agricultural and forestry areas, adding an economic value to residual biomass inputs not previously considered and contributing to the social development of rural areas.

Suggested Citation

  • Oscar Ruíz-Carmona & Jorge M. Islas-Samperio & Lourdes Larrondo-Posadas & Fabio Manzini & Genice K. Grande-Acosta & Christian Álvarez-Escobedo, 2021. "Solid Biofuels Scenarios from Rural Agricultural and Forestry Residues for Mexican Industrial SMEs," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6560-:d:654638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehrig, Rita & Behrendt, Frank, 2013. "Co-firing of imported wood pellets – An option to efficiently save CO2 emissions in Europe?," Energy Policy, Elsevier, vol. 59(C), pages 283-300.
    2. Jie Xu & Shiyan Chang & Zhenhong Yuan & Yang Jiang & Shuna Liu & Weizhen Li & Longlong Ma, 2015. "Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China," Energies, MDPI, vol. 8(12), pages 1-18, December.
    3. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
    4. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    5. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    6. García, Carlos A. & Riegelhaupt, Enrique & Ghilardi, Adrián & Skutsch, Margaret & Islas, Jorge & Manzini, Fabio & Masera, Omar, 2015. "Sustainable bioenergy options for Mexico: GHG mitigation and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 545-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Alberto Soria-González & Raúl Tauro & José Juan Alvarado-Flores & Víctor Manuel Berrueta-Soriano & José Guadalupe Rutiaga-Quiñones, 2022. "Avocado Tree Pruning Pellets ( Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation," Energies, MDPI, vol. 15(20), pages 1-18, October.
    2. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guadalupe Pérez & Jorge M. Islas-Samperio & Genice K. Grande-Acosta & Fabio Manzini, 2022. "Socioeconomic and Environmental Aspects of Traditional Firewood for Cooking on the Example of Rural and Peri-Urban Mexican Households," Energies, MDPI, vol. 15(13), pages 1-30, July.
    2. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.
    3. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
    4. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    5. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    6. Ma, Chenshuo & Zhang, Yifei & Ma, Keni & Li, Chanyun, 2023. "Study on the relationship between service scale and investment cost of energy service stations," Energy, Elsevier, vol. 269(C).
    7. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
    8. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    10. Mei, Bin & Wetzstein, Michael, 2017. "Burning wood pellets for US electricity generation? A regime switching analysis," Energy Economics, Elsevier, vol. 65(C), pages 434-441.
    11. Xiaoxian Zhang & Fang Ma, 2015. "Emergy Evaluation of Different Straw Reuse Technologies in Northeast China," Sustainability, MDPI, vol. 7(9), pages 1-18, August.
    12. Julia Hansson & Roman Hackl, 2016. "The potential influence of sustainability criteria on the European Union pellets market—the example of Sweden," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 413-429, July.
    13. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    14. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    15. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Jorge M. Islas-Samperio & Fabio Manzini & Genice K. Grande-Acosta, 2019. "Toward a Low-Carbon Transport Sector in Mexico," Energies, MDPI, vol. 13(1), pages 1-27, December.
    18. Ulises Flores Hernández & Dirk Jaeger & Jorge Islas Samperio, 2017. "Bioenergy Potential and Utilization Costs for the Supply of Forest Woody Biomass for Energetic Use at a Regional Scale in Mexico," Energies, MDPI, vol. 10(8), pages 1-25, August.
    19. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    20. Cleary, Julian & Caspersen, John P., 2015. "Comparing the life cycle impacts of using harvest residue as feedstock for small- and large-scale bioenergy systems (part I)," Energy, Elsevier, vol. 88(C), pages 917-926.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6560-:d:654638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.