Design of a Wireless Charging System for Online Battery Spectroscopy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
- Li, Xue & Jiang, Jiuchun & Wang, Le Yi & Chen, Dafen & Zhang, Yanru & Zhang, Caiping, 2016. "A capacity model based on charging process for state of health estimation of lithium ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 537-543.
- Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
- Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dong Sik Kim & Young Mo Chung & Beom Jin Chung, 2023. "Statistical Analysis of Electric Vehicle Charging Based on AC Slow Chargers," Energies, MDPI, vol. 16(6), pages 1-15, March.
- Yang, Bowen & Wang, Dafang & Yu, Beike & Wang, Facheng & Chen, Shiqin & Sun, Xu & Dong, Haosong, 2024. "Research on online passive electrochemical impedance spectroscopy and its outlook in battery management," Applied Energy, Elsevier, vol. 363(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
- Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
- Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
- Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
- Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
- Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
- Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
- Yang, Lin & Cai, Yishan & Yang, Yixin & Deng, Zhongwei, 2020. "Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 257(C).
- Manoj Mathew & Stefan Janhunen & Mahir Rashid & Frank Long & Michael Fowler, 2018. "Comparative Analysis of Lithium-Ion Battery Resistance Estimation Techniques for Battery Management Systems," Energies, MDPI, vol. 11(6), pages 1-15, June.
- Xiong, Rui & Li, Linlin & Li, Zhirun & Yu, Quanqing & Mu, Hao, 2018. "An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 264-275.
- Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
- Ji’ang Zhang & Ping Wang & Yushu Liu & Ze Cheng, 2021. "Variable-Order Equivalent Circuit Modeling and State of Charge Estimation of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 14(3), pages 1-20, February.
- Martina Cianciullo & Giorgio Vilardi & Barbara Mazzarotta & Roberto Bubbico, 2022. "Simulation of the Thermal Runaway Onset in Li-Ion Cells—Influence of Cathode Materials and Operating Conditions," Energies, MDPI, vol. 15(11), pages 1-24, June.
- Bian, Xiaolei & Liu, Longcheng & Yan, Jinying, 2019. "A model for state-of-health estimation of lithium ion batteries based on charging profiles," Energy, Elsevier, vol. 177(C), pages 57-65.
- Yun Bao & Wenbin Dong & Dian Wang, 2018. "Online Internal Resistance Measurement Application in Lithium Ion Battery Capacity and State of Charge Estimation," Energies, MDPI, vol. 11(5), pages 1-11, April.
- Li, Shi & Pischinger, Stefan & He, Chaoyi & Liang, Liliuyuan & Stapelbroek, Michael, 2018. "A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test," Applied Energy, Elsevier, vol. 212(C), pages 1522-1536.
- Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
- Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
- Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
More about this item
Keywords
wireless power transfer; battery; electrochemical impedance spectroscopy; pseudo-random binary sequence; CLC filter; state of health;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:218-:d:474285. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.