IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6415-d651355.html
   My bibliography  Save this article

Improving the Electrical Efficiency of the PV Panel via Geothermal Heat Exchanger: Mathematical Model, Validation and Parametric Analysis

Author

Listed:
  • Evangelos I. Sakellariou

    (Department of Mechanical Engineering, University of West Attica, Campus II, Thivon 250, 12241 Aegaleo, Greece)

  • Petros J. Axaopoulos

    (Department of Mechanical Engineering, University of West Attica, Campus II, Thivon 250, 12241 Aegaleo, Greece)

  • Ioannis E. Sarris

    (Department of Mechanical Engineering, University of West Attica, Campus II, Thivon 250, 12241 Aegaleo, Greece)

  • Nodirbek Abdullaev

    (Department of Thermodynamics and Thermal Engineering, Tashkent State Technical University, Universitet 2, Tashkent 100095, Uzbekistan)

Abstract

Silicon based photovoltaic modules (PV) are a wide spread technology and are used for small and large PV power stations. At the moment, the most efficient method which can be used to improve the annual electrical energy production of PVs is solar tracking systems. However, solar tracking systems increase substantially the initial cost of the investment and insert maintenance costs. During the last few decades, alternative improving methods have been investigated. These methods are based on the reduction of the PV cell temperature, which adversely affects the power production. In the present study, a system with water based photovoltaic-thermal (PVT) collector paired with geothermal heat exchanger (GHE) is compared on the electrical energy basis with a conventional PV system. As the first approach on the topic, the aim is to find out in which extent the PVT-GHE system improves the electrical energy generation by cooling down the PV cells and which parameters influence the most its energy performance. With this aim in mind, the model of the system with the PV, PVT, and GHE was formulated in TRNSYS and validated via experimental data. Meteorological data for Athens (Greece) were used and parametric analyses were conducted. The results showed that the PVT based system can increase the generated electricity from 0.61 to 5.5%. The flowrate, the size of the GHE and the number in-series connected PVTs are the parameters which influence the most the energy performance of the system.

Suggested Citation

  • Evangelos I. Sakellariou & Petros J. Axaopoulos & Ioannis E. Sarris & Nodirbek Abdullaev, 2021. "Improving the Electrical Efficiency of the PV Panel via Geothermal Heat Exchanger: Mathematical Model, Validation and Parametric Analysis," Energies, MDPI, vol. 14(19), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6415-:d:651355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    2. Kordzadeh, Azadeh, 2010. "The effects of nominal power of array and system head on the operation of photovoltaic water pumping set with array surface covered by a film of water," Renewable Energy, Elsevier, vol. 35(5), pages 1098-1102.
    3. Badache, Messaoud & Eslami-Nejad, Parham & Ouzzane, Mohamed & Aidoun, Zine & Lamarche, Louis, 2016. "A new modeling approach for improved ground temperature profile determination," Renewable Energy, Elsevier, vol. 85(C), pages 436-444.
    4. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    5. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    6. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    7. Fuentes, M. & Vivar, M. & de la Casa, J. & Aguilera, J., 2018. "An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 110-120.
    8. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evangelos I. Sakellariou & Petros J. Axaopoulos & Bill Vaneck Bot & Ioannis E. Sarris, 2022. "Energy Performance Evaluation of a Solar PVT Thermal Energy Storage System Based on Small Size Borefield," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    2. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    3. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Kim, Namsu & Kim, Dajung & Kang, Hanjun & Park, Yong-Gi, 2016. "Improved heat dissipation in a crystalline silicon PV module for better performance by using a highly thermal conducting backsheet," Energy, Elsevier, vol. 113(C), pages 515-520.
    5. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    6. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    7. Hernandez-Perez, J.G. & Carrillo, J.G. & Bassam, A. & Flota-Banuelos, M. & Patino-Lopez, L.D., 2020. "A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation," Renewable Energy, Elsevier, vol. 147(P1), pages 1209-1220.
    8. Nasrin, R. & Rahim, N.A. & Fayaz, H. & Hasanuzzaman, M., 2018. "Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research," Renewable Energy, Elsevier, vol. 121(C), pages 286-300.
    9. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    10. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    11. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    12. Siddiqui, M.U. & Siddiqui, Osman K. & Al-Sarkhi, A. & Arif, A.F.M. & Zubair, Syed M., 2019. "A novel heat exchanger design procedure for photovoltaic panel cooling application: An analytical and experimental evaluation," Applied Energy, Elsevier, vol. 239(C), pages 41-56.
    13. Saeed Abdul-Ganiyu & David A Quansah & Emmanuel W Ramde & Razak Seidu & Muyiwa S. Adaramola, 2020. "Investigation of Solar Photovoltaic-Thermal (PVT) and Solar Photovoltaic (PV) Performance: A Case Study in Ghana," Energies, MDPI, vol. 13(11), pages 1-17, May.
    14. Chandrasekar, M. & Senthilkumar, T., 2015. "Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures," Energy, Elsevier, vol. 90(P2), pages 1401-1410.
    15. Nasrin, R. & Hasanuzzaman, M. & Rahim, N.A., 2018. "Effect of high irradiation and cooling on power, energy and performance of a PVT system," Renewable Energy, Elsevier, vol. 116(PA), pages 552-569.
    16. Md Tofael Ahmed & Masud Rana Rashel & Mahmudul Islam & A. K. M. Kamrul Islam & Mouhaydine Tlemcani, 2024. "Classification and Parametric Analysis of Solar Hybrid PVT System: A Review," Energies, MDPI, vol. 17(3), pages 1-24, January.
    17. Kumar, Ajay & Dhiman, Prashant, 2023. "Modeling and optimization of photovoltaic thermal system under recyclic operation by response surface methodology," Renewable Energy, Elsevier, vol. 203(C), pages 228-244.
    18. Ryszard Myhan & Karolina Szturo & Monika Panfil & Zbigniew Szwejkowski, 2020. "The Influence of Weather Conditions on the Optimal Setting of Photovoltaic Thermal Hybrid Solar Collectors—A Case Study," Energies, MDPI, vol. 13(18), pages 1-13, September.
    19. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    20. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6415-:d:651355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.