IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6231-d647179.html
   My bibliography  Save this article

A Replicable Methodology to Evaluate Passive Façade Performance with SMA during the Architectural Design Process: A Case Study Application

Author

Listed:
  • Kristian Fabbri

    (Department of Architecture, University of Bologna, 40136 Bologna, Italy)

  • Jacopo Gaspari

    (Department of Architecture, University of Bologna, 40136 Bologna, Italy)

Abstract

Huge efforts have been made in recent decades to improve energy saving in the building sector, particularly focused on the role of façades. Among the explored viable solutions, climate-adaptive building shells [CABS] consider promising solutions to control solar radiation, both in terms of illuminance and heating levels, but are still piloting these solutions due to their complex designs and necessary costs. The present study aims to provide a speedy but reliable methodology to evaluate the potential impacts of adopting active/passive CABS systems during the preliminary design stage. The proposed methodology allows the evaluation and comparison, when multiple options are considered, of the effects of each solution in terms of the energy needs, thermal comfort and lighting, while reducing the required effort and time for an extensive analysis of the overall building level. This is based on the use of a “virtual test room” where different conditions and configurations can be explored. A case study in the city of Bologna is included for demonstration purposes. The achieved results support the decisions made regarding energy behavior (over/under heating), indoor comfort, lighting and energy at an early design stage.

Suggested Citation

  • Kristian Fabbri & Jacopo Gaspari, 2021. "A Replicable Methodology to Evaluate Passive Façade Performance with SMA during the Architectural Design Process: A Case Study Application," Energies, MDPI, vol. 14(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6231-:d:647179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yamineva, Yulia, 2017. "Lessons from the Intergovernmental Panel on Climate Change on inclusiveness across geographies and stakeholders," Environmental Science & Policy, Elsevier, vol. 77(C), pages 244-251.
    2. Ciscar, Juan-Carlos & Dowling, Paul, 2014. "Integrated assessment of climate impacts and adaptation in the energy sector," Energy Economics, Elsevier, vol. 46(C), pages 531-538.
    3. López, Marlén & Rubio, Ramón & Martín, Santiago & Ben Croxford,, 2017. "How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 692-703.
    4. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    5. Loonen, R.C.G.M. & Trčka, M. & Cóstola, D. & Hensen, J.L.M., 2013. "Climate adaptive building shells: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 483-493.
    6. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacopo Gaspari & Kristian Fabbri, 2022. "Exploring the Effects of Climate-Adaptive Building Shells: An Applicative Time-Saving Algorithm on a Case Study in Bologna, Italy," Energies, MDPI, vol. 15(21), pages 1-19, November.
    2. Kristian Fabbri & Jacopo Gaspari & Alessia Costa & Sofia Principi, 2022. "The Role of Architectural Skin Emissivity Influencing Outdoor Microclimatic Comfort: A Case Study in Bologna, Italy," Sustainability, MDPI, vol. 14(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    2. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    3. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    4. Pérez, Juan C. & González, Albano & Díaz, Juan P. & Expósito, Francisco J. & Felipe, Jonatan, 2019. "Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands," Renewable Energy, Elsevier, vol. 133(C), pages 749-759.
    5. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    6. Lyu, Wenjing & Liu, Jin, 2021. "Soft skills, hard skills: What matters most? Evidence from job postings," Applied Energy, Elsevier, vol. 300(C).
    7. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    8. Bonjean Stanton, Muriel C. & Dessai, Suraje & Paavola, Jouni, 2016. "A systematic review of the impacts of climate variability and change on electricity systems in Europe," Energy, Elsevier, vol. 109(C), pages 1148-1159.
    9. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    10. Viviescas, Cindy & Lima, Lucas & Diuana, Fabio A. & Vasquez, Eveline & Ludovique, Camila & Silva, Gabriela N. & Huback, Vanessa & Magalar, Leticia & Szklo, Alexandre & Lucena, André F.P. & Schaeffer, , 2019. "Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Hilden, Mikael & Huuki, Hannu & Kivisaari, Visa & Kopsakangas-Savolainen, Maria, 2018. "The importance of transnational impacts of climate change in a power market," Energy Policy, Elsevier, vol. 115(C), pages 418-425.
    12. Lyu, Wenjing & Liu, Jin, 2021. "Artificial Intelligence and emerging digital technologies in the energy sector," Applied Energy, Elsevier, vol. 303(C).
    13. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    14. Simon Parkinson & Ned Djilali, 2015. "Robust response to hydro-climatic change in electricity generation planning," Climatic Change, Springer, vol. 130(4), pages 475-489, June.
    15. Lucas, Edimilson Costa & Mendes-Da-Silva, Wesley, 2018. "Impact of climate on firm value: Evidence from the electric power industry in Brazil," Energy, Elsevier, vol. 153(C), pages 359-368.
    16. Kristian Fabbri & Jacopo Gaspari & Licia Felicioni, 2020. "Climate Change Effect on Building Performance: A Case Study in New York," Energies, MDPI, vol. 13(12), pages 1-19, June.
    17. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    18. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    19. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    20. Anggi Putri Kurniadi & Hasdi Aimon & Zamroni Salim & Ragimun Ragimun & Adang Sonjaya & Sigit Setiawan & Viktor Siagian & Lokot Zein Nasution & R Nurhidajat & Mutaqin Mutaqin & Joko Sabtohadi, 2024. "Analysis of Existing and Forecasting for Coal and Solar Energy Consumption on Climate Change in Asia Pacific: New Evidence for Sustainable Development Goals," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 352-359, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6231-:d:647179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.