IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8168-d960787.html
   My bibliography  Save this article

Exploring the Effects of Climate-Adaptive Building Shells: An Applicative Time-Saving Algorithm on a Case Study in Bologna, Italy

Author

Listed:
  • Jacopo Gaspari

    (Department of Architecture, University of Bologna, 40136 Bologna, Italy)

  • Kristian Fabbri

    (Department of Architecture, University of Bologna, 40136 Bologna, Italy)

Abstract

Adaptive façades represent a viable and effective technological solution to reduce the building energy demand for cooling while achieving interesting aesthetic effects on the building envelope to screen solar radiation. During the last decade, many different design solutions, including those based on shape memory alloys, have been experimented to obtain appropriate responses without being dependent on electro-mechanically actuated systems. Several recent and ongoing studies have been published in the scientific literature regarding the different actuator typologies, as well as the different properties of the materials used, which usually determine the adaptive solution characteristics after a series of complex and time-consuming simulations using specialised dynamic modelling software. Due to the time and resources required, this kind of evaluation is usually delivered during the last and more advanced design stage as a form of assessment of already-taken architectural and technological choices. The study reported in the paper aims to offer a quick, time-saving simplified algorithm to calculate the response of an adaptive façade, according to the ISO 13790 standards, to be adopted during the early design stage to evaluate the possible effects of design decisions. The study includes three main steps: (a) the conceptualisation of the adaptive solution considering the context conditions; (b) the definition of the calculation algorithm; (c) the application of the method to a test room in a case study building located in Bologna for supporting the discussion of the related outcomes.

Suggested Citation

  • Jacopo Gaspari & Kristian Fabbri, 2022. "Exploring the Effects of Climate-Adaptive Building Shells: An Applicative Time-Saving Algorithm on a Case Study in Bologna, Italy," Energies, MDPI, vol. 15(21), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8168-:d:960787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Elhadad & Chro Hama Radha & István Kistelegdi & Bálint Baranyai & János Gyergyák, 2020. "Model Simplification on Energy and Comfort Simulation Analysis for Residential Building Design in Hot and Arid Climate," Energies, MDPI, vol. 13(8), pages 1-17, April.
    2. Sun, Liangliang & Lu, Lin & Yang, Hongxing, 2012. "Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles," Applied Energy, Elsevier, vol. 90(1), pages 233-240.
    3. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    4. Kristian Fabbri & Jacopo Gaspari & Licia Felicioni, 2020. "Climate Change Effect on Building Performance: A Case Study in New York," Energies, MDPI, vol. 13(12), pages 1-19, June.
    5. Kristian Fabbri & Jacopo Gaspari, 2021. "A Replicable Methodology to Evaluate Passive Façade Performance with SMA during the Architectural Design Process: A Case Study Application," Energies, MDPI, vol. 14(19), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Brzezicki, 2024. "A Systematic Review of the Most Recent Concepts in Kinetic Shading Systems with a Focus on Biomimetics: A Motion/Deformation Analysis," Sustainability, MDPI, vol. 16(13), pages 1-40, July.
    2. Gonçalves, M. & Figueiredo, A. & Almeida, R.M.S.F. & Vicente, R., 2024. "Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    2. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    3. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    4. Bressan, M. & El Basri, Y. & Galeano, A.G. & Alonso, C., 2016. "A shadow fault detection method based on the standard error analysis of I-V curves," Renewable Energy, Elsevier, vol. 99(C), pages 1181-1190.
    5. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    6. Wei, Haokun & Liu, Jian & Yang, Biao, 2014. "Cost-benefit comparison between Domestic Solar Water Heater (DSHW) and Building Integrated Photovoltaic (BIPV) systems for households in urban China," Applied Energy, Elsevier, vol. 126(C), pages 47-55.
    7. Saida Teraa & Meriama Bencherif, 2022. "From hygrothermal adaptation of endemic plants to meteorosensitive biomimetic architecture: case of Mediterranean biodiversity hotspot in Northeastern Algeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10876-10901, September.
    8. Abir Khechiba & Djamila Djaghrouri & Moussadek Benabbas & Francesco Leccese & Michele Rocca & Giacomo Salvadori, 2023. "Balancing Thermal Comfort and Energy Consumption in Residential Buildings of Desert Areas: Impact of Passive Strategies," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    9. Hui Zhang & Xiaoxi Huang & Zhengwei Wang & Shiyu Jin & Benlin Xiao & Yanyan Huang & Wei Zhong & Aofei Meng, 2024. "An Estimation of the Available Spatial Intensity of Solar Energy in Urban Blocks in Wuhan, China," Energies, MDPI, vol. 17(5), pages 1-26, February.
    10. Ali, Hayder & Khan, Hassan Abbas, 2020. "Techno-economic evaluation of two 42 kWp polycrystalline-Si and CIS thin-film based PV rooftop systems in Pakistan," Renewable Energy, Elsevier, vol. 152(C), pages 347-357.
    11. Rojhat Ibrahim & Sara Elhadad & Bálint Baranyai & Tamás János Katona, 2022. "Impact Assessment of Morphology and Layout of Zones on Refugees’ Affordable Core Shelter Performance," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    12. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    13. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    14. Fiorito, Francesco & Sauchelli, Michele & Arroyo, Diego & Pesenti, Marco & Imperadori, Marco & Masera, Gabriele & Ranzi, Gianluca, 2016. "Shape morphing solar shadings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 863-884.
    15. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    16. Shaohang Shi & Jingfen Sun & Mengjia Liu & Xinxing Chen & Weizhi Gao & Yehao Song, 2022. "Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings," Energies, MDPI, vol. 15(23), pages 1-23, December.
    17. Tripathy, M. & Joshi, H. & Panda, S.K., 2017. "Energy payback time and life-cycle cost analysis of building integrated photovoltaic thermal system influenced by adverse effect of shadow," Applied Energy, Elsevier, vol. 208(C), pages 376-389.
    18. Sangmu Bae & Yujin Nam & Joon-Ho Choi, 2020. "Comparative Analysis of System Performance and Thermal Comfort for an Integrated System with PVT and GSHP Considering Two Load Systems: Convective Heating and Radiant Floor Heating," Energies, MDPI, vol. 13(20), pages 1-19, October.
    19. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
    20. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8168-:d:960787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.