IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6114-d643259.html
   My bibliography  Save this article

Influences of Control Parameters on Reduction of Energy Losses in Electrohydraulic Valve with Stepping Motors

Author

Listed:
  • Andrzej Milecki

    (Institute of Mechanical Technology, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland)

  • Jarosław Ortmann

    (Institute of Mechanical Technology, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland)

Abstract

In many heavy machines, the use of high force drives is required. For such tasks, electrohydraulic servo drives with proportional valves are used most often. In these valves, the proportional electromagnets are applied. If high precise control is additionally required, it is necessary to use expensive servo valves or precise stepping motors. In this paper, the application of a valve with one (or with two) stepping motors in the electrohydraulic servo drive is described. Such motors may work in a micro-step mode, which enables the precise positioning of the valve spool with low energy consumption. The control system structure that was used for positioning, consisting of such an electrohydraulic servo drive with a valve having stepping motors, is described. In the investigations, the following control parameters are considered: the number of stepping motors used, proportional gain coefficients, supply pressure, and desired step distance. The simulation model of the servo drive is proposed, enabling the investigations of energy consumption during the positioning process. In the investigations, the drive step responses are recorded and compared, taking into account the rise time and energy consumption. The overshot-free algorithm is used in the following step and tested in positioning tasks. The collected results of energy consumption of the drive during the positioning process are compared with other solutions.

Suggested Citation

  • Andrzej Milecki & Jarosław Ortmann, 2021. "Influences of Control Parameters on Reduction of Energy Losses in Electrohydraulic Valve with Stepping Motors," Energies, MDPI, vol. 14(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6114-:d:643259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    2. Christoph Gradl & Rudolf Scheidl, 2017. "Performance of an Energy Efficient Low Power Stepper Converter," Energies, MDPI, vol. 10(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Rybarczyk & Andrzej Milecki, 2022. "The Use of a Model-Based Controller for Dynamics Improvement of the Hydraulic Drive with Proportional Valve and Synchronous Motor," Energies, MDPI, vol. 15(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
    2. Konrad Johan Jensen & Morten Kjeld Ebbesen & Michael Rygaard Hansen, 2021. "Novel Concept for Electro-Hydrostatic Actuators for Motion Control of Hydraulic Manipulators," Energies, MDPI, vol. 14(20), pages 1-27, October.
    3. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    4. Lasse Schmidt & Kenneth Vorbøl Hansen, 2022. "Electro-Hydraulic Variable-Speed Drive Networks—Idea, Perspectives, and Energy Saving Potentials," Energies, MDPI, vol. 15(3), pages 1-33, February.
    5. Rudolf Scheidl, 2021. "The Hydraulically Controlled Oscillating Piston Converter," Energies, MDPI, vol. 14(8), pages 1-17, April.
    6. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2021. "Analysis of the Energy Efficiency Improvement in a Load-Sensing Hydraulic System Built on the ISO Plate," Energies, MDPI, vol. 14(20), pages 1-14, October.
    7. Søren Ketelsen & Sebastian Michel & Torben O. Andersen & Morten Kjeld Ebbesen & Jürgen Weber & Lasse Schmidt, 2021. "Thermo-Hydraulic Modelling and Experimental Validation of an Electro-Hydraulic Compact Drive," Energies, MDPI, vol. 14(9), pages 1-29, April.
    8. Mingkun Yang & Gexin Chen & Jianxin Lu & Cong Yu & Guishan Yan & Chao Ai & Yanwen Li, 2021. "Research on Energy Transmission Mechanism of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(16), pages 1-17, August.
    9. Lin, Zichang & Lin, Zhenchuan & Wang, Feng & Xu, Bing, 2024. "A series electric hybrid wheel loader powertrain with independent electric load-sensing system," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6114-:d:643259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.