IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5949-d638902.html
   My bibliography  Save this article

Experimental Investigation of a Double-Acting Vane Pump with Integrated Electric Drive

Author

Listed:
  • Marek Pawel Ciurys

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Wieslaw Fiebig

    (Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-371 Wroclaw, Poland)

Abstract

The article presents an innovative design solution of a balanced vane pump integrated with an electric motor that has been developed by the authors. The designed and constructed bench, which enables testing of the system: power supply, converter, ntegrated motor—pump assembly and hydraulic load at different motor speeds and different pressures in the hydraulic system, is described. The electromagnetic and hydraulic processes in the motor-pump unit are investigated, and new, previously unpublished, results of experimental studies at steady and dynamic states are presented. The results of the study showed good dynamics of the integrated motor-pump assembly and proved its suitability to control the pump flow rate, and thus, the speed of the hydraulic cylinder or the speed of the hydraulic motor.

Suggested Citation

  • Marek Pawel Ciurys & Wieslaw Fiebig, 2021. "Experimental Investigation of a Double-Acting Vane Pump with Integrated Electric Drive," Energies, MDPI, vol. 14(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5949-:d:638902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vadim Carev & Jan Roháč & Martin Šipoš & Michal Schmirler, 2021. "A Multilayer Brushless DC Motor for Heavy Lift Drones," Energies, MDPI, vol. 14(9), pages 1-19, April.
    2. Keun-Young Yoon & Soo-Whang Baek, 2019. "Robust Design Optimization with Penalty Function for Electric Oil Pumps with BLDC Motors," Energies, MDPI, vol. 12(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryszard Palka & Marcin Wardach, 2022. "Design and Application of Electrical Machines," Energies, MDPI, vol. 15(2), pages 1-7, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Knypiński & Karol Pawełoszek & Yvonnick Le Menach, 2020. "Optimization of Low-Power Line-Start PM Motor Using Gray Wolf Metaheuristic Algorithm," Energies, MDPI, vol. 13(5), pages 1-11, March.
    2. Xinmin Li & Guokai Jiang & Wei Chen & Tingna Shi & Guozheng Zhang & Qiang Geng, 2019. "Commutation Torque Ripple Suppression Strategy of Brushless DC Motor Considering Back Electromotive Force Variation," Energies, MDPI, vol. 12(10), pages 1-14, May.
    3. Vijaya Kumar Jonnalagadda & Narasimhulu Tammminana & Raja Rao Guntu & Surender Reddy Salkuti, 2023. "Performance Analysis of Conventional IPMSM and NCPM Based IPMSM," Clean Technol., MDPI, vol. 5(3), pages 1-19, September.
    4. Roland Kasper & Dmytro Golovakha, 2020. "Combined Optimal Torque Feedforward and Modal Current Feedback Control for Low Inductance PM Motors," Energies, MDPI, vol. 13(23), pages 1-16, November.
    5. Jean-Michel Grenier & Ramón Pérez & Mathieu Picard & Jérôme Cros, 2021. "Magnetic FEA Direct Optimization of High-Power Density, Halbach Array Permanent Magnet Electric Motors," Energies, MDPI, vol. 14(18), pages 1-19, September.
    6. Fugang Zhai & Liu Yang & Wenqi Fu & Haisheng Tong & Tianyu Zhao, 2022. "The Effects of Permanent Magnet Segmentations on Electromagnetic Performance in Ironless Brushless DC Motors," Energies, MDPI, vol. 15(2), pages 1-18, January.
    7. Matija Krznar & Danijel Pavković & Mihael Cipek & Juraj Benić, 2021. "Modeling, Controller Design and Simulation Groundwork on Multirotor Unmanned Aerial Vehicle Hybrid Power Unit," Energies, MDPI, vol. 14(21), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5949-:d:638902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.