IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5728-d633541.html
   My bibliography  Save this article

Preparing the Ecuador’s Power Sector to Enable a Large-Scale Electric Land Transport

Author

Listed:
  • Janeth Carolina Godoy

    (Renewable and Sustainable Energy Systems, Technical University of Munich, Lichtenbergstr. 4a, 85748 Garching bei München, Germany)

  • Daniel Villamar

    (Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador
    Département Sciences Pour L’ingénieur, Université de Perpignan, École Doctorale 305, 52 Avenue Paul Alduy, 66100 Perpignan, France.)

  • Rafael Soria

    (Department of Mechanical Engineering, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Campus Cumbayá, Quito 170901, Ecuador)

  • César Vaca

    (b4Future, Guangüiltagua N37-266, Quito 170528, Ecuador)

  • Thomas Hamacher

    (Renewable and Sustainable Energy Systems, Technical University of Munich, Lichtenbergstr. 4a, 85748 Garching bei München, Germany)

  • Freddy Ordóñez

    (Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador)

Abstract

The Ecuador’s expansion plans for the power sector promote the exploitation of hydro power potential, natural gas and a small share of alternative renewable energies. In 2019, electricity generation reached 76.3% from hydroelectric power, 21.9% from thermal plants and 1.8% from other renewable resources. Although the power energy mix is mainly based on renewable technologies, the total energy demand is still dependent on fossil fuels, which is the case of the transport sector that alone accounted for 50% of the total primary energy consumed in the country. This paper analyzes the pathway to develop a clean and diversified electricity mix, covering the demand of three specific development levels of electric transportation. The linear optimization model ( urbs ) and the Ecuador Land Use and Energy Netwrok Analysis (ELENA) are used to optimize the expansion of the power system in the period from 2020 to 2050. Results show that reaching an electricity mix 100% based on renewable energies is possible and still cover a highly electrified transport that includes 47.8% of land passenger, and 5.9% of land freight transport. Therefore, the electrification of this sector is a viable alternative for the country to rely on its own energy resources, while reinforcing its future climate change mitigation commitments.

Suggested Citation

  • Janeth Carolina Godoy & Daniel Villamar & Rafael Soria & César Vaca & Thomas Hamacher & Freddy Ordóñez, 2021. "Preparing the Ecuador’s Power Sector to Enable a Large-Scale Electric Land Transport," Energies, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5728-:d:633541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5728/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    3. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    4. Bataille, Christopher & Waisman, Henri & Vogt-Schilb, Adrien & Jaramillo, Marcela & Delgado, Ricardo & Arguello, Ricardo & Clarke, Leon & Wild, Thomas & Lallana, Francisco & Bravo, Gonzalo & Le Treut,, 2020. "Net-zero Deep Decarbonization Pathways in Latin America: Challenges and Opportunities," IDB Publications (Working Papers) 10702, Inter-American Development Bank.
    5. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    6. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    7. Schaffitzel, Filip & Jakob, Michael & Soria, Rafael & Vogt-Schilb, Adrien & Ward, Hauke, 2020. "Can government transfers make energy subsidy reform socially acceptable? A case study on Ecuador," Energy Policy, Elsevier, vol. 137(C).
    8. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    9. Remus Creţan & Lucian Vesalon, 2017. "The Political Economy of Hydropower in the Communist Space: Iron Gates Revisited," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 108(5), pages 688-701, October.
    10. Sauer, Ildo L. & Escobar, Javier F. & da Silva, Mauro F.P. & Meza, Carlos G. & Centurion, Carlos & Goldemberg, José, 2015. "Bolivia and Paraguay: A beacon for sustainable electric mobility?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 910-925.
    11. Espinoza, Vicente Sebastian & Fontalvo, Javier & Martí-Herrero, Jaime & Ramírez, Paola & Capellán-Pérez, Iñigo, 2019. "Future oil extraction in Ecuador using a Hubbert approach," Energy, Elsevier, vol. 182(C), pages 520-534.
    12. Ruffato-Ferreira, Vera & da Costa Barreto, Renata & Oscar Júnior, Antonio & Silva, Wanderson Luiz & de Berrêdo Viana, Daniel & do Nascimento, José Antonio Sena & de Freitas, Marcos Aurélio Vasconcelos, 2017. "A foundation for the strategic long-term planning of the renewable energy sector in Brazil: Hydroelectricity and wind energy in the face of climate change scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1124-1137.
    13. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    14. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiriboga, Gonzalo & Chamba, Rommel & Garcia, Andrés & Heredia-Fonseca, Roberto & Montero- Calderón, Carolina & Carvajal C, Ghem, 2023. "Useful energy is a meaningful approach to building the decarbonization: A case of study of the Ecuadorian transport sector," Transport Policy, Elsevier, vol. 132(C), pages 76-87.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Missbach, Leonard & Steckel, Jan Christoph & Vogt-Schilb, Adrien, 2024. "Cash transfers in the context of carbon pricing reforms in Latin America and the Caribbean," World Development, Elsevier, vol. 173(C).
    2. Espinoza, Vicente Sebastian & Fontalvo, Javier & Martí-Herrero, Jaime & Miguel, Luis Javier & Mediavilla, Margarita, 2022. "Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?," Energy, Elsevier, vol. 259(C).
    3. Malerba, Daniele & Gaentzsch, Anja & Ward, Hauke, 2021. "Mitigating poverty: The patterns of multiple carbon tax and recycling regimes for Peru," Energy Policy, Elsevier, vol. 149(C).
    4. Johne, Clara & Schröder, Enno & Ward, Hauke, 2023. "The distributional effects of a nitrogen tax: Evidence from Germany," Ecological Economics, Elsevier, vol. 208(C).
    5. Malerba, Daniele, 2020. "Poverty alleviation and local environmental degradation: An empirical analysis in Colombia," World Development, Elsevier, vol. 127(C).
    6. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    7. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    8. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    9. Nils Ohlendorf & Michael Jakob & Jan Christoph Minx & Carsten Schröder & Jan Christoph Steckel, 2021. "Distributional Impacts of Carbon Pricing: A Meta-Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 1-42, January.
    10. D'Orazio, Paola & Hertel, Tobias & Kasbrink, Fynn, 2022. "No need to worry? Estimating the exposure of the German banking sector to climate-related transition risks," Ruhr Economic Papers 946, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    12. Jakob, Michael & Soria, Rafael & Trinidad, Carlos & Edenhofer, Ottmar & Bak, Céline & Bouille, Daniel & Buira, Daniel & Carlino, Hernan & Gutman, Veronica & Hübner, Christian & Knopf, Brigitte & Lucen, 2019. "Green fiscal reform for a just energy transition in Latin America," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-11.
    13. Böhringer, Christoph & Rosendahl, Knut Einar, 2022. "Europe beyond coal – An economic and climate impact assessment," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    14. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga, 2021. "Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change," Ecosystem Services, Elsevier, vol. 50(C).
    15. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    16. Sarah Hafner & Olivia James & Aled Jones, 2019. "A Scoping Review of Barriers to Investment in Climate Change Solutions," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    17. Li, Xiao & Liu, Pan & Wang, Yibo & Yang, Zhikai & Gong, Yu & An, Rihui & Huang, Kangdi & Wen, Yan, 2022. "Derivation of operating rule curves for cascade hydropower reservoirs considering the spot market: A case study of the China's Qing River cascade-reservoir system," Renewable Energy, Elsevier, vol. 182(C), pages 1028-1038.
    18. Melo, Leonardo B. & Estanislau, Fidéllis B.G.L.e & Costa, Antonella L. & Fortini, Ângela, 2019. "Impacts of the hydrological potential change on the energy matrix of the Brazilian State of Minas Gerais: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 415-422.
    19. Chryso Sotiriou & Theodoros Zachariadis, 2019. "Optimal Timing of Greenhouse Gas Emissions Abatement in Europe," Energies, MDPI, vol. 12(10), pages 1-15, May.
    20. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5728-:d:633541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.