IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5564-d629833.html
   My bibliography  Save this article

A Study to Investigate the Effect of Valve Mechanisms on Exhaust Residual Gas and Effective Release Energy of a Motorcycle Engine

Author

Listed:
  • Nguyen Xuan Khoa

    (School of Mechanical Engineering, University of Ulsan, San 29, Mugeo2-dong, Nam-gu, Ulsan 44610, Korea
    Faculty of Automobile Technology, Hanoi University of Industry, No. 298, Cau Dien Street, Bac Tu Liem District, Hanoi 100000, Vietnam)

  • Ocktaeck Lim

    (School of Mechanical Engineering, University of Ulsan, San 29, Mugeo2-dong, Nam-gu, Ulsan 44610, Korea)

Abstract

The purpose of this study was to investigate the effect of valve mechanisms on the exhaust residual gas (ERG) and effective release energy (ERE) of a motorcycle engine. Here, a simulation model and the estimation a new valve mechanism design is presented. An AVL-Boost simulation model and an experiment system were established. The classical spline approximation method was used to design a new cam profile for various valve lifts. The simulation model was used to estimate the effect of the new valve mechanism designs on engine performance. A new camshaft was produced based on the research data. The results show that the engine obtained a maximum engine brake torque of 21.53 Nm at 7000 rpm, which is an increase of 3.2% compared to the engine using the original valve mechanism. In addition, the residual gas was improved, the maximum engine effective release energy was 0.83 kJ, the maximum engine power was 18.1 kW, representing an improvement of 7.2%, and the air mass flow was improved by 4.97%.

Suggested Citation

  • Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "A Study to Investigate the Effect of Valve Mechanisms on Exhaust Residual Gas and Effective Release Energy of a Motorcycle Engine," Energies, MDPI, vol. 14(17), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5564-:d:629833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khoa, Nguyen Xuan & Quach Nhu, Y. & Lim, Ocktaeck, 2020. "Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine," Applied Energy, Elsevier, vol. 278(C).
    2. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    3. Nguyen Xuan Khoa & Ocktaeck Lim, 2020. "Comparative Study of the Effective Release Energy, Residual Gas Fraction, and Emission Characteristics with Various Valve Port Diameter-Bore Ratios (VPD/B) of a Four-Stroke Spark Ignition Engine," Energies, MDPI, vol. 13(6), pages 1-18, March.
    4. Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "The Internal Residual Gas and Effective Release Energy of a Spark-Ignition Engine with Various Inlet Port–Bore Ratios and Full Load Condition," Energies, MDPI, vol. 14(13), pages 1-13, June.
    5. Jung, Dongwon & Iida, Norimasa, 2018. "An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation," Applied Energy, Elsevier, vol. 212(C), pages 322-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quach-Nhu Yhcmute & Nguyen-Xuan Khoa & Ocktaeck Lim, 2021. "A Study on the Effect of Ignition Timing on Residual Gas, Effective Release Energy, and Engine Emissions of a V-Twin Engine," Energies, MDPI, vol. 14(15), pages 1-18, July.
    2. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    3. Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "The Internal Residual Gas and Effective Release Energy of a Spark-Ignition Engine with Various Inlet Port–Bore Ratios and Full Load Condition," Energies, MDPI, vol. 14(13), pages 1-13, June.
    4. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    5. Le-Trong Hieu & Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "An Investigation on the Effects of Input Parameters on the Dynamic and Electric Consumption of Electric Motorcycles," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    6. Nguyen Xuan Khoa & Ocktaeck Lim, 2020. "Comparative Study of the Effective Release Energy, Residual Gas Fraction, and Emission Characteristics with Various Valve Port Diameter-Bore Ratios (VPD/B) of a Four-Stroke Spark Ignition Engine," Energies, MDPI, vol. 13(6), pages 1-18, March.
    7. Khoa, Nguyen Xuan & Quach Nhu, Y. & Lim, Ocktaeck, 2020. "Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine," Applied Energy, Elsevier, vol. 278(C).
    8. Tuan Nghia Nguyen & Nguyen Xuan Khoa & Le Anh Tuan, 2021. "The Correlation of Biodiesel Blends with the Common Rail Diesel Engine’s Performance and Emission Characteristics," Energies, MDPI, vol. 14(11), pages 1-18, May.
    9. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    11. Huang, Shuai & Li, Tie & Zhang, Zhifei & Ma, Pengfei, 2019. "Rotational and vibrational temperatures in the spark plasma by various discharge energies and strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Wright, Y.M. & Vuorinen, V., 2018. "Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration," Applied Energy, Elsevier, vol. 230(C), pages 486-505.
    13. Y. Nhu Quach & Ocktaeck Lim, 2023. "An Investigation of the Effect of Propylene Gas Flame on Emissions and Temperature Distribution of a Preheated Metal Plate," Sustainability, MDPI, vol. 15(16), pages 1-13, August.
    14. Federico Ricci & Francesco Mariani & Stefano Papi & Jacopo Zembi & Michele Battistoni & Carlo Nazareno Grimaldi, 2024. "The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine," Energies, MDPI, vol. 17(7), pages 1-14, March.
    15. He, Bang-Quan & Xu, Si-Peng & Fu, Xue-Qing & Zhao, Hua, 2020. "Combustion and emission characteristics of an ultra-lean burn gasoline engine with dimethyl ether auto-ignition," Energy, Elsevier, vol. 209(C).
    16. Schröder, Lukas & Hillenbrand, Thomas & Brüggemann, Dieter, 2024. "Evaluation of the combustion process of directly injected methane in a rapid compression machine with a laser-based ignition system and an electrical ignition system," Energy, Elsevier, vol. 289(C).
    17. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    18. Tsuboi, Seima & Miyokawa, Shinji & Matsuda, Masayoshi & Yokomori, Takeshi & Iida, Norimasa, 2019. "Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine," Applied Energy, Elsevier, vol. 250(C), pages 617-632.
    19. Cai, Zun & Zhu, Jiajian & Sun, Mingbo & Wang, Zhenguo & Bai, Xue-Song, 2018. "Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor," Applied Energy, Elsevier, vol. 228(C), pages 1777-1782.
    20. Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5564-:d:629833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.