IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1181-d328480.html
   My bibliography  Save this article

Mathematical Modelling of Drive System with an Elastic Coupling Based on Formal Analogy between the Transmission Shaft and the Electric Transmission Line

Author

Listed:
  • Andrzej Popenda

    (Faculty of Electrical Engineering, Częstochowa University of Technology, 42-201 Częstochowa, Poland)

  • Marek Lis

    (Faculty of Electrical Engineering, Częstochowa University of Technology, 42-201 Częstochowa, Poland)

  • Marcjan Nowak

    (Faculty of Electrical Engineering, Częstochowa University of Technology, 42-201 Częstochowa, Poland)

  • Krzysztof Blecharz

    (Faculty of Electrical and Control Engineering, Department of Controlled Electric Drives and Energy Conversion, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

Abstract

In the paper, the kinematic structure of the transmission shaft between the driving motor and the working mechanism is studied. The analysis is based on electrical and mechanical similarities. The equivalent circuits, typical for electrical systems, are defined for the transmission shaft concerned. Modelling of the transmission shaft based on a formal analogy between the transmission shaft and the electric transmission line is also proposed. The results of a computer simulation and experimental test are presented. The results confirm the high conformity of the proposed mathematical model with the physical object.

Suggested Citation

  • Andrzej Popenda & Marek Lis & Marcjan Nowak & Krzysztof Blecharz, 2020. "Mathematical Modelling of Drive System with an Elastic Coupling Based on Formal Analogy between the Transmission Shaft and the Electric Transmission Line," Energies, MDPI, vol. 13(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1181-:d:328480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amalia Pielorz & Monika Skóra, 2006. "Modeling of multimass systems torsionally deformed with variable inertia," International Journal of Differential Equations, Hindawi, vol. 2006, pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Kabziński & Przemysław Mosiołek, 2021. "Integrated, Multi-Approach, Adaptive Control of Two-Mass Drive with Nonlinear Damping and Stiffness," Energies, MDPI, vol. 14(17), pages 1-23, September.
    2. Jacek Kabziński & Przemysław Mosiołek, 2022. "Observer-Based, Robust Position Tracking in Two-Mass Drive System," Energies, MDPI, vol. 15(23), pages 1-28, November.
    3. Andrzej Popenda & Andrzej Szafraniec & Andriy Chaban, 2021. "Dynamics of Electromechanical Systems Containing Long Elastic Couplings and Safety of Their Operation," Energies, MDPI, vol. 14(23), pages 1-18, November.
    4. Andriy Chaban & Zbigniew Łukasik & Andrzej Popenda & Andrzej Szafraniec, 2021. "Mathematical Modelling of Transient Processes in an Asynchronous Drive with a Long Shaft Including Cardan Joints," Energies, MDPI, vol. 14(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling of Mechanical Forces and Power Balance in Electromechanical Energy Converter," Mathematics, MDPI, vol. 11(10), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1181-:d:328480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.