IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8928-d984390.html
   My bibliography  Save this article

Optimization of Energy Production from Two-Stage Mesophilic–Thermophilic Anaerobic Digestion of Cheese Whey Using a Response Surface Methodology Approach

Author

Listed:
  • Andrey A. Kovalev

    (Federal State Autonomous Educational Institution of Higher Education, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave., Nizhny Novgorod 603950, Russia
    Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, 1st Institutskiy proezd, 5, Moscow 109428, Russia)

  • Elza R. Mikheeva

    (Federal State Autonomous Educational Institution of Higher Education, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave., Nizhny Novgorod 603950, Russia)

  • Vladimir Panchenko

    (Department of Theoretical and Applied Mechanics, Russian University of Transport, Moscow 127994, Russia)

  • Inna V. Katraeva

    (Federal State Autonomous Educational Institution of Higher Education, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave., Nizhny Novgorod 603950, Russia
    Federal State Budgetary Educational Institution of Higher Education, Nizhny Novgorod State University of Architecture and Civil Engineering, St. Ilyinskaya, 65, Nizhny Novgorod 603950, Russia)

  • Dmitriy A. Kovalev

    (Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, 1st Institutskiy proezd, 5, Moscow 109428, Russia)

  • Elena A. Zhuravleva

    (Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Prospekt, 33, 2, Moscow 119071, Russia)

  • Yuriy V. Litti

    (Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Prospekt, 33, 2, Moscow 119071, Russia)

Abstract

Spatial separation into acidogenic and methanogenic stages is considered a viable option to ensure process stability, energy efficiency and the better control of key anaerobic digestion (AD) parameters. The elucidation of the optimal modes of two-stage AD for the maximization of the recovery of biofuels (H 2 and CH 4 ) is still an urgent task, the main optimization criteria being the highest energy yield (EY) and energy production rate (EPR). In this work, a response surface methodology was used for an optimization of energy production from the two-stage mesophilic–thermophilic AD of cheese whey (CW). Three dilution rates of CW, providing values of 10.9, 14.53 and 21.8 g for the chemical oxygen demand (COD)/L in the influent and three hydraulic retention times (HRTs) (1, 2 and 3 days) in methanogenic biofilters at a constant HRT in an acidogenic biofilter of 0.42 days, were tested to optimize the EY and EPR. The desirability approach produced combined optimum conditions as follows: the dilution rate of the CW provided 17.58 g COD/L (corresponding to OLR of 6.5 g COD/(L·day)) in the influent and a HRT in the methanogenic biofilter of 2.28 days, both of which provided a maximum EPR of 80.263 kJ/(L·day) and EY of 9.56 kJ/g COD, with an overall desirability value of 0.883.

Suggested Citation

  • Andrey A. Kovalev & Elza R. Mikheeva & Vladimir Panchenko & Inna V. Katraeva & Dmitriy A. Kovalev & Elena A. Zhuravleva & Yuriy V. Litti, 2022. "Optimization of Energy Production from Two-Stage Mesophilic–Thermophilic Anaerobic Digestion of Cheese Whey Using a Response Surface Methodology Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8928-:d:984390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Margarita Andreas Dareioti & Aikaterini Ioannis Vavouraki & Konstantina Tsigkou & Michael Kornaros, 2021. "Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey," Energies, MDPI, vol. 14(17), pages 1-14, August.
    2. Kumar, G. & Bakonyi, P. & Periyasamy, S. & Kim, S.H. & Nemestóthy, N. & Bélafi-Bakó, K., 2015. "Lignocellulose biohydrogen: Practical challenges and recent progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 728-737.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    2. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    3. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    4. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    5. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    6. Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
    7. Kumar, Gopal Ramesh & Chowdhary, Nupoor, 2016. "Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1194-1206.
    8. Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
    9. Pattanamanee, Walailak & Chisti, Yusuf & Choorit, Wanna, 2015. "Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: Effects of the mixture composition," Applied Energy, Elsevier, vol. 157(C), pages 245-254.
    10. Haorui Zhang & Jiaolin Li & Quanguo Zhang & Shengnan Zhu & Shuai Yang & Zhiping Zhang, 2020. "Effect of Substrate Concentration on Photo-Fermentation Bio-Hydrogen Production Process from Starch-Rich Agricultural Leftovers under Oscillation," Sustainability, MDPI, vol. 12(7), pages 1-8, March.
    11. Lin, Chiu-Yue & Nguyen, Thi Mai-Linh & Chu, Chen-Yeon & Leu, Hoang-Jyh & Lay, Chyi-How, 2018. "Fermentative biohydrogen production and its byproducts: A mini review of current technology developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4215-4220.
    12. Graciela M. L. Ruiz-Aguilar & Hector G. Nuñez-Palenius & Nanh Lovanh & Sarai Camarena-Martínez, 2022. "Comparative Study of Methane Production in a One-Stage vs. Two-Stage Anaerobic Digestion Process from Raw Tomato Plant Waste," Energies, MDPI, vol. 15(23), pages 1-12, December.
    13. Soares, Juliana Ferreira & Confortin, Tássia Carla & Todero, Izelmar & Mayer, Flávio Dias & Mazutti, Marcio Antonio, 2020. "Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    15. Satar, Ibdal & Daud, Wan Ramli Wan & Kim, Byung Hong & Somalu, Mahendra Rao & Ghasemi, Mostafa, 2017. "Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose," Energy, Elsevier, vol. 139(C), pages 1188-1196.
    16. Marcin Dębowski & Joanna Kazimierowicz & Aneta Ignaciuk & Sandra Mlonek & Marcin Zieliński, 2024. "Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor," Energies, MDPI, vol. 17(11), pages 1-24, May.
    17. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    18. Elbeshbishy, Elsayed & Dhar, Bipro Ranjan & Nakhla, George & Lee, Hyung-Sool, 2017. "A critical review on inhibition of dark biohydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 656-668.
    19. Moniruzzaman, M. & Yaakob, Zahira & Khatun, Rahima, 2016. "Biotechnology for Jatropha improvement: A worthy exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1262-1277.
    20. Sivagurunathan, Periyasamy & Kumar, Gopalakrishnan & Mudhoo, Ackmez & Rene, Eldon R. & Saratale, Ganesh Dattatraya & Kobayashi, Takuro & Xu, Kaiqin & Kim, Sang-Hyoun & Kim, Dong-Hoon, 2017. "Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 28-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8928-:d:984390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.