IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5387-d625182.html
   My bibliography  Save this article

Water Cycle Algorithm Optimized Type II Fuzzy Controller for Load Frequency Control of a Multi-Area, Multi-Fuel System with Communication Time Delays

Author

Listed:
  • Ch. Naga Sai Kalyan

    (Department of Electrical Engineering, Vasireddy Venkatadri Institute of Technology, Guntur 522508, India)

  • B. Srikanth Goud

    (Department of Electrical Engineering, Anurag College of Engineering Ghatkesar, Telangana 501301, India)

  • Ch. Rami Reddy

    (Department of Electrical Engineering, Malla Reddy Engineering College (A) Maisammaguda, Telangana 500100, India)

  • Haitham S. Ramadan

    (Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
    ISTHY, Institut International sur le Stockage de l’Hydrogène, 90400 Meroux-Moval, France)

  • Mohit Bajaj

    (Department of Electrical and Electronics Engineering, National Institute of Technology Delhi, New Delhi 110040, India)

  • Ziad M. Ali

    (College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Wadi Addawaser 11991, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

Abstract

This paper puts forward the implementation of an intelligent type II fuzzy PID (T2-FPID) controller tweaked with a water cycle algorithm (WCA), subjected to an error multiplied with time area over integral (ITAE) objective index for regularizing the variations in frequency and interline power flow of an interconnected power system during load disturbances. The WCA-based T2-FPID is tested on a multi-area (MA) system comprising thermal-hydro-nuclear (THN) (MATHN) plants in each area. The dynamical behavior of the system is analyzed upon penetrating area 1 with a step load perturbation (SLP) of 10%. However, power system practicality constraints, such as generation rate constraints (GRCs) and time delays in communication (CTDs), are examined. Afterward, a territorial control scheme of a superconducting magnetic energy storage system (SMES) and a unified power flow controller (UPFC) is installed to further enhance the system performance. The dominancy of the presented WCA-tuned T2-FPID is revealed by testing it on a widely used dual-area hydro-thermal (DAHT) power system model named test system 1 in this paper. Analysis reveals the efficacy of the presented controller with other approaches reported in the recent literature. Finally, secondary and territorial regulation schemes are subjected to sensitivity analysis to deliberate the robustness.

Suggested Citation

  • Ch. Naga Sai Kalyan & B. Srikanth Goud & Ch. Rami Reddy & Haitham S. Ramadan & Mohit Bajaj & Ziad M. Ali, 2021. "Water Cycle Algorithm Optimized Type II Fuzzy Controller for Load Frequency Control of a Multi-Area, Multi-Fuel System with Communication Time Delays," Energies, MDPI, vol. 14(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5387-:d:625182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deepak Kumar Gupta & Amitkumar V. Jha & Bhargav Appasani & Avireni Srinivasulu & Nicu Bizon & Phatiphat Thounthong, 2021. "Load Frequency Control Using Hybrid Intelligent Optimization Technique for Multi-Source Power Systems," Energies, MDPI, vol. 14(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayyab Ali & Suheel Abdullah Malik & Ibrahim A. Hameed & Amil Daraz & Hana Mujlid & Ahmad Taher Azar, 2022. "Load Frequency Control and Automatic Voltage Regulation in a Multi-Area Interconnected Power System Using Nature-Inspired Computation-Based Control Methodology," Sustainability, MDPI, vol. 14(19), pages 1-30, September.
    2. Balvender Singh & Adam Slowik & Shree Krishan Bishnoi, 2023. "Review on Soft Computing-Based Controllers for Frequency Regulation of Diverse Traditional, Hybrid, and Future Power Systems," Energies, MDPI, vol. 16(4), pages 1-30, February.
    3. Achitaev, Andrey A. & Suslov, Konstantin V. & Nazarychev, Alexander N. & Volkova, Irina O. & Kozhemyakin, Vyacheslav E. & Voloshin, Alexander A. & Minakov, Andrey V., 2022. "Application of electromagnetic continuous variable transmission in hydraulic turbines to increase stability of an off-grid power system," Renewable Energy, Elsevier, vol. 196(C), pages 125-136.
    4. B. Srikanth Goud & Ch. Rami Reddy & Mohit Bajaj & Ehab E. Elattar & Salah Kamel, 2021. "Power Quality Improvement Using Distributed Power Flow Controller with BWO-Based FOPID Controller," Sustainability, MDPI, vol. 13(20), pages 1-33, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent N. Ogar & Sajjad Hussain & Kelum A. A. Gamage, 2023. "Load Frequency Control Using the Particle Swarm Optimisation Algorithm and PID Controller for Effective Monitoring of Transmission Line," Energies, MDPI, vol. 16(15), pages 1-17, August.
    2. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    3. Ajay Kumar & Deepak Kumar Gupta & Sriparna Roy Ghatak & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong, 2022. "A Novel Improved GSA-BPSO Driven PID Controller for Load Frequency Control of Multi-Source Deregulated Power System," Mathematics, MDPI, vol. 10(18), pages 1-41, September.
    4. Deepak Kumar Gupta & Ankit Kumar Soni & Amitkumar V. Jha & Sunil Kumar Mishra & Bhargav Appasani & Avireni Srinivasulu & Nicu Bizon & Phatiphat Thounthong, 2021. "Hybrid Gravitational–Firefly Algorithm-Based Load Frequency Control for Hydrothermal Two-Area System," Mathematics, MDPI, vol. 9(7), pages 1-15, March.
    5. Balvinder Singh & Adam Slowik & Shree Krishna Bishnoi, 2022. "A Dual-Stage Controller for Frequency Regulation in a Two-Area Realistic Diverse Hybrid Power System Using Bull–Lion Optimization," Energies, MDPI, vol. 15(21), pages 1-24, October.
    6. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "A Particle Swarm Optimization Technique Tuned TID Controller for Frequency and Voltage Regulation with Penetration of Electric Vehicles and Distributed Generations," Energies, MDPI, vol. 15(21), pages 1-32, November.
    7. Yicong Wang & Chang Liu & Ji Han & Haoyu Tan & Fangchao Ke & Dongyin Zhang & Cong Wei & Shihong Miao, 2022. "A Distributed Frequency Regulation Method for Multi-Area Power System Considering Optimization of Communication Structure," Energies, MDPI, vol. 15(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5387-:d:625182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.