IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5385-d625144.html
   My bibliography  Save this article

Operation Cycle of Diesel CR Injection Pump via Pressure Measurement in Piston Working Chamber

Author

Listed:
  • Ornella Chiavola

    (Industrial, Electronic and Mechanical Engineering Department (DIIEM), Roma TRE University, Via della Vasca Navale, 79, 00146 Rome, Italy)

  • Edoardo Frattini

    (Industrial, Electronic and Mechanical Engineering Department (DIIEM), Roma TRE University, Via della Vasca Navale, 79, 00146 Rome, Italy)

  • Simone Lancione

    (Industrial, Electronic and Mechanical Engineering Department (DIIEM), Roma TRE University, Via della Vasca Navale, 79, 00146 Rome, Italy)

  • Fulvio Palmieri

    (Industrial, Electronic and Mechanical Engineering Department (DIIEM), Roma TRE University, Via della Vasca Navale, 79, 00146 Rome, Italy)

Abstract

The paper is devoted to the analysis of the operating cycle of a high-pressure injection pump used in common rail systems. The investigation is based on experimental activities, and it is carried out in a novel pump set-up that allows measurements of the instantaneous pressure in the piston working chamber. A single plunger pump has been equipped with a piezo-resistive pressure transducer which allows for the measurement of the pressure signal during pump operation on a test rig. The paper describes the experimental set-up, the modified injection pump equipped with the pressure transducer, and the experimental tests carried out. Main results obtained using a standard commercial diesel fuel are discussed at first; secondly, the focus moves on to the use of an alternative fuel (biodiesel) whose features in terms of bulk modulus, viscosity, and density significantly differ from the reference fuel. Based on the characteristics of the pump operating cycle, the fuel suction and delivery processes are analyzed, pointing out how the used fuel type is reflected on them. The investigations are aimed at describing the operating characteristics of the pump, focusing the attention on those features playing a fundamental role on the global efficiency of the pump. The amplitudes of the pump-work phases, the ranges of pressure fluctuations, and the pressure-rise rates are quantified and reported, providing crucial indications for lumped parameter modeling and design activities in the field of current generation high-pressure injection pumps.

Suggested Citation

  • Ornella Chiavola & Edoardo Frattini & Simone Lancione & Fulvio Palmieri, 2021. "Operation Cycle of Diesel CR Injection Pump via Pressure Measurement in Piston Working Chamber," Energies, MDPI, vol. 14(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5385-:d:625144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmen Mata & Jakub Piaszyk & José Antonio Soriano & José Martín Herreros & Athanasios Tsolakis & Karl Dearn, 2020. "Impact of Alternative Paraffinic Fuels on the Durability of a Modern Common Rail Injection System," Energies, MDPI, vol. 13(16), pages 1-14, August.
    2. Giancarlo Chiatti & Ornella Chiavola & Fulvio Palmieri, 2019. "Impact on Combustion and Emissions of Jet Fuel as Additive in Diesel Engine Fueled with Blends of Petrol Diesel, Renewable Diesel and Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 12(13), pages 1-14, June.
    3. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2015. "Effects of both blended and pure biodiesel on waste heat recovery potentiality and exhaust emissions of a small CI (compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 661-671.
    4. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    6. Sean Moser & K. Dean Edwards & Tobias Schoeffler & Zoran Filipi, 2021. "CFD/FEA Co-Simulation Framework for Analysis of the Thermal Barrier Coating Design and Its Impact on the HD Diesel Engine Performance," Energies, MDPI, vol. 14(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ornella Chiavola & Edoardo Frattini & Fulvio Palmieri & Ambra Fioravanti & Pietro Marani, 2023. "On the Efficiency of Mobile Hydraulic Power Packs Operating with New and Aged Eco-Friendly Fluids," Energies, MDPI, vol. 16(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Liu, Guilin & Mai, Jianfeng, 2022. "Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios," Energy, Elsevier, vol. 251(C).
    3. Elsayed Abdelhameed & Hiroshi Tashima, 2022. "EGR and Emulsified Fuel Combination Effects on the Combustion, Performance, and NOx Emissions in Marine Diesel Engines," Energies, MDPI, vol. 16(1), pages 1-22, December.
    4. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    5. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
    7. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Maciej Bajerlein & Wojciech Karpiuk & Rafał Smolec, 2021. "Use of Gas Desorption Effect in Injection Systems of Diesel Engines," Energies, MDPI, vol. 14(1), pages 1-22, January.
    9. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    10. Vallapudi Dhana Raju & Ibham Veza & Harish Venu & Manzoore Elahi M. Soudagar & M. A. Kalam & Tansir Ahamad & Prabhu Appavu & Jayashri N. Nair & S. M. Ashrafur Rahman, 2023. "Comprehensive Analysis of Compression Ratio, Exhaust Gas Recirculation, and Pilot Fuel Injection in a Diesel Engine Fuelled with Tamarind Biodiesel," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    11. Josef Maroušek & Anna Maroušková, 2021. "Economic Considerations on Nutrient Utilization in Wastewater Management," Energies, MDPI, vol. 14(12), pages 1-16, June.
    12. Linus Yinn Leng Ang & Fangsen Cui & Kian-Meng Lim & Heow Pueh Lee, 2023. "A Systematic Review of Emerging Ventilated Acoustic Metamaterials for Noise Control," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    13. Hua, Yan & Wang, Zhong & Li, Ruina & Liu, Shuai & Zhao, Yang & Qu, Lei & Mei, Deqing & Lv, Hui, 2022. "Experimental study on morphology, nanostructure and oxidation reactivity of particles in diesel engine with exhaust gas recirculation (EGR) burned with different alternative fuels," Energy, Elsevier, vol. 261(PA).
    14. Agudelo, Andrés F. & García-Contreras, Reyes & Agudelo, John R. & Armas, Octavio, 2016. "Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle," Applied Energy, Elsevier, vol. 174(C), pages 201-212.
    15. Martín, Jaime & Novella, Ricardo & García, Antonio & Carreño, Ricardo & Heuser, Benedikt & Kremer, Florian & Pischinger, Stefan, 2016. "Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode," Energy, Elsevier, vol. 115(P1), pages 1305-1319.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    17. Taejung Kim & Jungsoo Park & Honghyun Cho, 2020. "Emission Characteristics under Diesel and Biodiesel Fueled Compression Ignition Engine with Various Injector Holes and EGR Conditions," Energies, MDPI, vol. 13(11), pages 1-14, June.
    18. Alberth Renne Gonzalez Caranton & Vladimir Silva Leal & Camilo Bayona-Roa & Manuel Alejandro Mayorga Betancourt & Carolina Betancourt & Deiver Cortina & Nelson Jimenez Acuña & Mauricio López, 2021. "Experimental Investigation of the Mechanical and Thermal Behavior of a PT6A-61A Engine Using Mixtures of JETA-1 and Biodiesel," Energies, MDPI, vol. 14(11), pages 1-22, June.
    19. Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2015. "Exergy analysis of combustion in VGT-modified diesel engine with detailed chemical kinetics mechanism," Energy, Elsevier, vol. 93(P1), pages 740-748.
    20. Chunguang Fei & Tong Lei & Zuoqin Qian & Zihao Shu, 2022. "Piston Thermal Analysis of Heavy Commercial Vehicle Diesel Engine Using Lanthanum Zirconate Thermal-Barrier Coating," Energies, MDPI, vol. 15(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5385-:d:625144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.