IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5297-d622447.html
   My bibliography  Save this article

Oxyfuel Combustion of a Model MSW—An Experimental Study

Author

Listed:
  • Michaël Becidan

    (Department of Thermal Energy, SINTEF Energy Research, 7465 Trondheim, Norway)

  • Mario Ditaranto

    (Department of Thermal Energy, SINTEF Energy Research, 7465 Trondheim, Norway)

  • Per Carlsson

    (Department of Thermal Energy, SINTEF Energy Research, 7465 Trondheim, Norway)

  • Jørn Bakken

    (Department of Thermal Energy, SINTEF Energy Research, 7465 Trondheim, Norway)

  • Maria N. P. Olsen

    (Department of Thermal Energy, SINTEF Energy Research, 7465 Trondheim, Norway)

  • Johnny Stuen

    (Agency for Waste Management (REG), City of Oslo, 0516 Oslo, Norway)

Abstract

The oxyfuel combustion of a model MSW (municipal solid waste) under various conditions was carried out in a lab-scale reactor. The aim was to study the behavior of MSW and identify challenges and opportunities associated with the development of this technology in the context of integration with CCS (carbon capture and storage). The experimental results show the effects of the oxidizer composition on the combustion process. Complete combustion can be attained under a variety of oxyfuel conditions, and the differences highlighted with O 2 /CO 2 as an oxidizer compared with O 2 /N 2 do not constitute showstoppers. MSW oxyfuel combustion hence offers a great potential for the combined (1) treatment of waste (contaminants’ destruction, volume, and weight reduction), (2) production of heat/power, and (3) CCS with negative CO 2 emissions.

Suggested Citation

  • Michaël Becidan & Mario Ditaranto & Per Carlsson & Jørn Bakken & Maria N. P. Olsen & Johnny Stuen, 2021. "Oxyfuel Combustion of a Model MSW—An Experimental Study," Energies, MDPI, vol. 14(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5297-:d:622447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    2. Tang, Yuting & Ma, Xiaoqian & Lai, Zhiyi & Zhou, Daoxi & Lin, Hai & Chen, Yong, 2012. "NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere," Energy, Elsevier, vol. 40(1), pages 300-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wienchol, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2022. "Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions," Energy, Elsevier, vol. 248(C).
    2. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Michele Bertone & Luca Stabile & Giorgio Buonanno, 2024. "An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application," Sustainability, MDPI, vol. 16(10), pages 1-18, May.
    4. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    5. Kung, Kevin S. & Thengane, Sonal K. & Ghoniem, Ahmed F. & Lim, C. Jim & Cao, Yankai & Sokhansanj, Shahabaddine, 2022. "Start-up, shutdown, and transition timescale analysis in biomass reactor operations," Energy, Elsevier, vol. 248(C).
    6. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    7. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    8. Wei, Yunmei & Li, Jingyuan & Shi, Dezhi & Liu, Guotao & Zhao, Youcai & Shimaoka, Takayuki, 2017. "Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 51-65.
    9. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    10. Lasek, Janusz A. & Janusz, Marcin & Zuwała, Jarosław & Głód, Krzysztof & Iluk, Andrzej, 2013. "Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures," Energy, Elsevier, vol. 62(C), pages 105-112.
    11. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Zhou, Hui & Meng, AiHong & Long, YanQiu & Li, QingHai & Zhang, YanGuo, 2014. "An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 107-122.
    13. Zou, Huihuang & Liu, Chao & Evrendilek, Fatih & He, Yao & Liu, Jingyong, 2021. "Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres," Renewable Energy, Elsevier, vol. 171(C), pages 1327-1343.
    14. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    15. von Bohnstein, Maximilian & Richter, Marcel & Graeser, Phillip & Schiemann, Martin & Ströhle, Jochen & Epple, Bernd, 2021. "3D CFD simulation of a 250 MWel oxy-fuel boiler with evaluation of heat radiation calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Zhu, Hongqing & Liao, Qi & Hu, Lintao & Xie, Linhao & Qu, Baolin & Gao, Rongxiang, 2023. "Effect of removal of alkali and alkaline earth metals in cornstalk on slagging/fouling and co-combustion characteristics of cornstalk/coal blends for biomass applications," Renewable Energy, Elsevier, vol. 207(C), pages 275-285.
    17. Birgen, Cansu & Magnanelli, Elisa & Carlsson, Per & Becidan, Michaël, 2021. "Operational guidelines for emissions control using cross-correlation analysis of waste-to-energy process data," Energy, Elsevier, vol. 220(C).
    18. Sharma, Bhasha & Goswami, Yagyadatta & Sharma, Shreya & Shekhar, Shashank, 2021. "Inherent roadmap of conversion of plastic waste into energy and its life cycle assessment: A frontrunner compendium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    20. Michele Bertone & Luca Stabile & Gino Cortellessa & Fausto Arpino & Giorgio Buonanno, 2024. "Techno-Economic Assessment of Amine-Based Carbon Capture in Waste-to-Energy Incineration Plant Retrofit," Sustainability, MDPI, vol. 16(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5297-:d:622447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.