IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5243-d620964.html
   My bibliography  Save this article

The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material

Author

Listed:
  • Lech Lichołai

    (Department of Building Engineering, Rzeszow University of Technology, ul. Poznańska 2, 35-959 Rzeszów, Poland)

  • Aleksander Starakiewicz

    (Department of Building Engineering, Rzeszow University of Technology, ul. Poznańska 2, 35-959 Rzeszów, Poland)

  • Joanna Krasoń

    (Department of Building Engineering, Rzeszow University of Technology, ul. Poznańska 2, 35-959 Rzeszów, Poland)

  • Przemysław Miąsik

    (Department of Building Engineering, Rzeszow University of Technology, ul. Poznańska 2, 35-959 Rzeszów, Poland)

Abstract

Among the technological solutions for external walls, the Trombe wall is an interesting proposition for obtaining solar radiation energy. The aim of the presented research is to determine the influence of glazing parameters on the thermal performance of the Trombe wall containing a phase change material (PCM). In the experimental tests, three glazing (G1, G2, and G3) with different heat transfer coefficient (Ug) and total solar energy transmittance factor (g) were used. The tests were carried out under laboratory conditions in a small-scale simulation chamber. The thermal energy of absorbed solar radiation was simulated with a heating panel. All of the walls are characterized by high dynamics of operation in the first two days. From the moment of heating, the walls achieve the minimum value of the heat flux after 16–18 h. In practice, this means the highest thermal efficiency of the wall during the night of the next day. A noticeable influence of the type of glazing on the operation of the barrier was found. The obtained results suggest that the most effective barrier for “sunny days” is the B1 barrier. The B2 barrier is suitable for alternating days in the cycle: “sunny day”, “cloudy day”. However, the B3 barrier is the most advantageous in periods with a predominance of “cloudy days”. In addition to the experimental studies, a numerical model of the B1 barrier was developed and simulation was carried out using the finite element method. The simulation results were consistent with the experimental tests. The second numerical simulation confirmed the rightness of using the heating panel in experimental tests.

Suggested Citation

  • Lech Lichołai & Aleksander Starakiewicz & Joanna Krasoń & Przemysław Miąsik, 2021. "The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material," Energies, MDPI, vol. 14(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5243-:d:620964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan, Shuangping & Wang, Lin & Zhao, Zhiqiang & Zhang, Chengwang, 2021. "Experimental study on thermal performance of an integrated PCM Trombe wall," Renewable Energy, Elsevier, vol. 163(C), pages 1932-1941.
    2. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    3. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    4. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk, 2018. "Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime," Applied Energy, Elsevier, vol. 217(C), pages 390-408.
    5. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    6. Jerzy Szyszka & Piero Bevilacqua & Roberto Bruno, 2020. "An Innovative Trombe Wall for Winter Use: The Thermo-Diode Trombe Wall," Energies, MDPI, vol. 13(9), pages 1-15, May.
    7. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Kundakci Koyunbaba, Basak & Yilmaz, Zerrin, 2012. "The comparison of Trombe wall systems with single glass, double glass and PV panels," Renewable Energy, Elsevier, vol. 45(C), pages 111-118.
    9. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Design Optimization of a Composite Solar Wall Integrating a PCM in a Individual House: Heating Demand and Thermal Comfort Considerations," Energies, MDPI, vol. 13(21), pages 1-29, October.
    10. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    11. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Impact of a Composite Trombe Wall Incorporating Phase Change Materials on the Thermal Behavior of an Individual House with Low Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-32, September.
    12. Du, Li & Ping, Lin & Yongming, Chen, 2020. "Study and analysis of air flow characteristics in Trombe wall," Renewable Energy, Elsevier, vol. 162(C), pages 234-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    2. Yuewei Zhu & Tao Zhang & Qingsong Ma & Hiroatsu Fukuda, 2022. "Thermal Performance and Optimizing of Composite Trombe Wall with Temperature-Controlled DC Fan in Winter," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    3. Michał Musiał & Lech Lichołai & Dušan Katunský, 2023. "Modern Thermal Energy Storage Systems Dedicated to Autonomous Buildings," Energies, MDPI, vol. 16(11), pages 1-28, May.
    4. Qing Yin & Hengyu Liu & Tianfu Zhou, 2023. "CiteSpace-Based Visualization Analysis on the Trombe Wall in Solar Buildings," Sustainability, MDPI, vol. 15(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Yuling & Yang, Qianli & Fei, Fan & Li, Kai & Jiang, Yijun & Zhang, Yuanwen & Fukuda, Hiroatsu & Ma, Qingsong, 2024. "Review of Trombe wall technology: Trends in optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    3. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    4. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    6. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    7. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    8. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    9. Zheng, Xinyao & Zhou, Yuekuan, 2024. "Dynamic heat-transfer mechanism and performance analysis of an integrated Trombe wall with radiant cooling for natural cooling energy harvesting and air-conditioning," Energy, Elsevier, vol. 288(C).
    10. Dimitrios Fidaros & Catherine Baxevanou & Michalina Markousi & Aris Tsangrassoulis, 2022. "Assessment of Various Trombe Wall Geometries with CFD Study," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    11. Victor Lohmann & Paulo Santos, 2020. "Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments," Energies, MDPI, vol. 13(11), pages 1-25, May.
    12. Aleksejs Prozuments & Anatolijs Borodinecs & Diana Bajare, 2023. "Trombe Wall System’s Thermal Energy Output Analysis at a Factory Building," Energies, MDPI, vol. 16(4), pages 1-13, February.
    13. Sergei, Kostikov & Shen, Chao & Jiang, Yiqiang, 2020. "A review of the current work potential of a trombe wall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Zhu, Na & Deng, Renjie & Hu, Pingfang & Lei, Fei & Xu, Linghong & Jiang, Zhangning, 2021. "Coupling optimization study of key influencing factors on PCM trombe wall for year thermal management," Energy, Elsevier, vol. 236(C).
    16. Ma, Qingsong & Fukuda, Hiroatsu & Wei, Xindong & Hariyadi, Agus, 2019. "Optimizing energy performance of a ventilated composite Trombe wall in an office building," Renewable Energy, Elsevier, vol. 134(C), pages 1285-1294.
    17. Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).
    18. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    19. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    20. Qingsong Ma & Hiroatsu Fukuda & Takumi Kobatake & Myonghyang Lee, 2017. "Study of a Double-Layer Trombe Wall Assisted by a Temperature-Controlled DC Fan for Heating Seasons," Sustainability, MDPI, vol. 9(12), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5243-:d:620964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.