IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5230-d620616.html
   My bibliography  Save this article

An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030

Author

Listed:
  • Thure Traber

    (Energy Watch Group, Albrechtstraße 22, 10117 Berlin, Germany)

  • Franziska Simone Hegner

    (Energy Watch Group, Albrechtstraße 22, 10117 Berlin, Germany
    Department of Physics, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany)

  • Hans-Josef Fell

    (Energy Watch Group, Albrechtstraße 22, 10117 Berlin, Germany)

Abstract

To be able to fulfil the Paris Climate Agreement and keep global warming with reasonable confidence at a maximum of 1.5 °C above pre-industrial levels, Germany must set an end to all greenhouse gas emissions by 2030. At the core of this task is the switch to 100% renewables across all sectors on the same time horizon. Conventional technologies fueled by fossil and nuclear energies are, according to the vast majority of current cost calculations, energetically inefficient, too expensive, and too slow in expansion to be able to deliver a substantial contribution to rapid climate protection. We present the first comprehensive energy scenario that shows the way to 100% renewable energy for all energy sectors by 2030. The result of the calculations is a cost-effective energy system that is compatible with the German share of necessary greenhouse gas reduction. This study shows a target system of generation, conversion, and storage technologies that can achieve the transformation to 100% renewable energy in all energy sectors—electricity, heat, and mobility—in time and at competitive costs below the costs of the current system. Moreover, we demonstrate the huge cost effect that arises if southern Germany renounces its onshore wind resources and find that this would substantially increase the need for high-voltage direct-current transmission capacity.

Suggested Citation

  • Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5230-:d:620616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
    2. Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    4. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    5. Gils, Hans Christian & Pregger, Thomas & Flachsbarth, Franziska & Jentsch, Mareike & Dierstein, Constantin, 2019. "Comparison of spatially and temporally resolved energy system models with a focus on Germany's future power supply," Applied Energy, Elsevier, vol. 255(C).
    6. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    7. Fraunholz, Christoph & Hladik, Dirk & Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2021. "On the long-term efficiency of market splitting in Germany," Energy Policy, Elsevier, vol. 149(C).
    8. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    9. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    10. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    11. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    12. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    13. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    14. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    15. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    16. Yue, Xiufeng & Patankar, Neha & Decarolis, Joseph & Chiodi, Alessandro & Rogan, Fionn & Deane, J.P. & O’Gallachoir, Brian, 2020. "Least cost energy system pathways towards 100% renewable energy in Ireland by 2050," Energy, Elsevier, vol. 207(C).
    17. Kiss, Viktor Miklós, 2015. "Modelling the energy system of Pécs – The first step towards a sustainable city," Energy, Elsevier, vol. 80(C), pages 373-387.
    18. Barragán-Escandón, Edgar A. & Zalamea-León, Esteban F. & Terrados-Cepeda, Julio & Vanegas-Peralta, P.F., 2020. "Energy self-supply estimation in intermediate cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    19. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    20. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    21. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    22. Child, Michael & Koskinen, Otto & Linnanen, Lassi & Breyer, Christian, 2018. "Sustainability guardrails for energy scenarios of the global energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 321-334.
    23. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    24. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arjuna Nebel & Julián Cantor & Sherif Salim & Amro Salih & Dixit Patel, 2022. "The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO 2 Emission Restrictions," Sustainability, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    3. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    7. Potrč, Sanja & Nemet, Andreja & Čuček, Lidija & Varbanov, Petar Sabev & Kravanja, Zdravko, 2022. "Synthesis of a regenerative energy system – beyond carbon emissions neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    11. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    12. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    13. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    15. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
    16. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    17. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Cristiani, Laura & de Santoli, Livio, 2022. "Rising targets to 55% GHG emissions reduction – The smart energy systems approach for improving the Italian energy strategy," Energy, Elsevier, vol. 259(C).
    18. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
    19. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    20. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5230-:d:620616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.