IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5189-d619399.html
   My bibliography  Save this article

The Application of Disturbance-Observer-Based Control in Breath Pressure Control of Aviation Electronic Oxygen Regulator

Author

Listed:
  • Rui Pan

    (School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

  • Guiping Lin

    (School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

  • Zhigao Shi

    (Hefei Jianghang Aircraft Equipment Corporation LTD. AVIC, Hefei 230051, China)

  • Yu Zeng

    (School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

  • Xue Yang

    (Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China)

Abstract

The electronic oxygen regulator (EOR) is a new type of aviation oxygen equipment which uses electronic servo control technology to control breathing gas pressure. In this paper, the control method of EOR was studied, and the dynamic model of the aviation oxygen system was established. A disturbance-observer-based controller (DOBC) was designed by the backstepping method to achieve the goal of stable and fast breath pressure control. The sensitivity function was proposed to describe the effect of inspiratory flow on breath pressure. Combined with the frequency domain analysis of the input sensitivity function, the parameters of the DOBC were analyzed and designed. Simulation and experiment studies were carried out to examine the control performance of DOBC in respiratory resistance and positive pressurization process under the influence of noise and time delay in the discrete electronic control system, which could meet the aviation physiology requirements. The research results not only verified the rationality of the application of DOBC in the breath control of EOR, but also proved the effectiveness of the control parameters design method according to the frequency domain analysis, which provided an important design basis for the subsequent study of EOR.

Suggested Citation

  • Rui Pan & Guiping Lin & Zhigao Shi & Yu Zeng & Xue Yang, 2021. "The Application of Disturbance-Observer-Based Control in Breath Pressure Control of Aviation Electronic Oxygen Regulator," Energies, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5189-:d:619399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ning Gao & Xin Lin & Weimin Wu & Frede Blaabjerg, 2021. "Grid Current Feedback Active Damping Control Based on Disturbance Observer for Battery Energy Storage Power Conversion System with LCL Filter," Energies, MDPI, vol. 14(5), pages 1-16, March.
    2. Janusz Baran & Andrzej Jąderko, 2020. "An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation," Energies, MDPI, vol. 13(23), pages 1-20, December.
    3. Nebiyeleul Daniel Amare & Doe Hun Kim & Sun Jick Yang & Young Ik Son, 2021. "Boundary Conditions for Transient and Robust Performance of a Reduced-Order Model-Based State Feedback Controller with PI Observer," Energies, MDPI, vol. 14(10), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Zhai & Shengquan Li & Zhuang Xu & Luyao Zhang & Juan Li, 2022. "Reduced-Order Extended State Observer-Based Sliding Mode Control for All-Clamped Plate Using an Inertial Actuator," Energies, MDPI, vol. 15(5), pages 1-12, February.
    2. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2021. "Advances in Fluid Power Systems," Energies, MDPI, vol. 14(24), pages 1-6, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agata Bielecka & Daniel Wojciechowski, 2021. "Stability Analysis of Shunt Active Power Filter with Predictive Closed-Loop Control of Supply Current," Energies, MDPI, vol. 14(8), pages 1-17, April.
    2. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Muhammad Saleem & Muhammad Hanif Ahmed Khan Khushik & Hira Tahir & Rae-Young Kim, 2021. "Robust L Approximation of an LCL Filter Type Grid-Connected Inverter Using Active Disturbance Rejection Control under Grid Impedance Uncertainty," Energies, MDPI, vol. 14(17), pages 1-21, August.
    4. Rafał Kuźniak & Artur Pawelec & Artur Bartosik & Marek Pawełczyk, 2022. "Determination of the Electricity Storage Power and Capacity for Cooperation with the Microgrid Implementing the Peak Shaving Strategy in Selected Industrial Enterprises," Energies, MDPI, vol. 15(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5189-:d:619399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.