IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5276-d621935.html
   My bibliography  Save this article

Robust L Approximation of an LCL Filter Type Grid-Connected Inverter Using Active Disturbance Rejection Control under Grid Impedance Uncertainty

Author

Listed:
  • Muhammad Saleem

    (Department of Electronics Engineering Technology, The Benazir Bhutto Shaheed University of Technology & Skill Development, Khairpur Mirs 66020, Pakistan)

  • Muhammad Hanif Ahmed Khan Khushik

    (Department of Electronics Engineering Technology, The Benazir Bhutto Shaheed University of Technology & Skill Development, Khairpur Mirs 66020, Pakistan)

  • Hira Tahir

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea
    Department of Electrical Engineering, University of Engineering & Technology, Lahore 54890, Pakistan)

  • Rae-Young Kim

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

High-order filters, such as LCL , are more commonly employed in grid-connected inverters (GcIs) as an interference element for the better attenuation of switching harmonics. However, LCL filters may have resonance poles and antiresonance zeros in the frequency response with inverter side current. This may affect the stability of the system and limit the control bandwidth with the simple single-loop PI control. This becomes severe with the introduction of grid impedance due to the large distance between renewable energy sources and the power grid. To mitigate this effect, active damping and sensorless damping is preferred with pre-information about grid impedance. In this paper, linear active disturbance rejection control (ADRC) is introduced, first to L filter type GcI and later extended to LCL filter type GcIs with minimum modification. From the frequency analysis, it is shown that the characteristics of the proposed control scheme remain the same even with a change in filter order and grid impedance. The resonance poles and antiresonance zeros in the LCL filter are compensated via the pole–zero cancelation technique. In addition to this, the preserve bandwidth, simple control design, and decoupled current control are also achieved with the proposed method. The robustness of the proposed method is compared with the single-loop PI control under different filter types and grid impedance uncertainty through MATLAB simulation and experimental outcomes.

Suggested Citation

  • Muhammad Saleem & Muhammad Hanif Ahmed Khan Khushik & Hira Tahir & Rae-Young Kim, 2021. "Robust L Approximation of an LCL Filter Type Grid-Connected Inverter Using Active Disturbance Rejection Control under Grid Impedance Uncertainty," Energies, MDPI, vol. 14(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5276-:d:621935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Saleem & Byoung-Sun Ko & Si-Hwan Kim & Sang-il Kim & Bhawani Shankar Chowdhry & Rae-Young Kim, 2019. "Active Disturbance Rejection Control Scheme for Reducing Mutual Current and Harmonics in Multi-Parallel Grid-Connected Inverters," Energies, MDPI, vol. 12(22), pages 1-21, November.
    2. Ning Gao & Xin Lin & Weimin Wu & Frede Blaabjerg, 2021. "Grid Current Feedback Active Damping Control Based on Disturbance Observer for Battery Energy Storage Power Conversion System with LCL Filter," Energies, MDPI, vol. 14(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changsheng Yuan & Xuesong Zhou & Youjie Ma & Zhiqiang Gao & Yongliang Zhou & Chenglong Wang, 2020. "Improved Application of Third-Order LADRC in Wind Power Inverter," Energies, MDPI, vol. 13(17), pages 1-22, August.
    2. Rui Pan & Guiping Lin & Zhigao Shi & Yu Zeng & Xue Yang, 2021. "The Application of Disturbance-Observer-Based Control in Breath Pressure Control of Aviation Electronic Oxygen Regulator," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Agata Bielecka & Daniel Wojciechowski, 2021. "Stability Analysis of Shunt Active Power Filter with Predictive Closed-Loop Control of Supply Current," Energies, MDPI, vol. 14(8), pages 1-17, April.
    4. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    5. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    6. Rafał Kuźniak & Artur Pawelec & Artur Bartosik & Marek Pawełczyk, 2022. "Determination of the Electricity Storage Power and Capacity for Cooperation with the Microgrid Implementing the Peak Shaving Strategy in Selected Industrial Enterprises," Energies, MDPI, vol. 15(13), pages 1-20, June.
    7. Xiaojie Zhou & Dezhi Xu & Yourui Huang, 2022. "Impedance Characteristics and Harmonic Analysis of LCL-Type Grid-Connected Converter Cluster," Energies, MDPI, vol. 15(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5276-:d:621935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.