IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4890-d611990.html
   My bibliography  Save this article

Short-Term Electric Load Forecasting Based on Variational Mode Decomposition and Grey Wolf Optimization

Author

Listed:
  • Mengran Zhou

    (School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

  • Tianyu Hu

    (School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

  • Kai Bian

    (School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

  • Wenhao Lai

    (School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

  • Feng Hu

    (School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

  • Oumaima Hamrani

    (School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

  • Ziwei Zhu

    (School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

Abstract

Short-term electric load forecasting plays a significant role in the safe and stable operation of the power system and power market transactions. In recent years, with the development of new energy sources, more and more sources have been integrated into the grid. This has posed a serious challenge to short-term electric load forecasting. Focusing on load series with non-linear and time-varying characteristics, an approach to short-term electric load forecasting using a “decomposition and ensemble” framework is proposed in this paper. The method is verified using hourly load data from Oslo and the surrounding areas of Norway. First, the load series is decomposed into five components by variational mode decomposition (VMD). Second, a support vector regression (SVR) forecasting model is established for the five components to predict the electric load components, and the grey wolf optimization (GWO) algorithm is used to optimize the cost and gamma parameters of SVR. Finally, the predicted values of the five components are superimposed to obtain the final electric load forecasting results. In this paper, the proposed method is compared with GWO-SVR without modal decomposition and using empirical mode decomposition (EMD) to test the impact of VMD on prediction. This paper also compares the proposed method with the SVR model using VMD and other optimization algorithms. The four evaluation indexes of the proposed method are optimal: MAE is 71.65 MW, MAPE is 1.41%, MSE is 10,461.32, and R 2 is 0.9834. This indicates that the proposed method has a good application prospect for short-term electric load forecasting.

Suggested Citation

  • Mengran Zhou & Tianyu Hu & Kai Bian & Wenhao Lai & Feng Hu & Oumaima Hamrani & Ziwei Zhu, 2021. "Short-Term Electric Load Forecasting Based on Variational Mode Decomposition and Grey Wolf Optimization," Energies, MDPI, vol. 14(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4890-:d:611990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
    2. Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
    3. Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
    4. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
    5. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    6. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    7. Rainer Göb & Kristina Lurz & Antonio Pievatolo, 2013. "Electrical load forecasting by exponential smoothing with covariates," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(6), pages 629-645, November.
    8. Guoqiang Sun & Tong Chen & Zhinong Wei & Yonghui Sun & Haixiang Zang & Sheng Chen, 2016. "A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks," Energies, MDPI, vol. 9(1), pages 1-16, January.
    9. Assareh, E. & Behrang, M.A. & Assari, M.R. & Ghanbarzadeh, A., 2010. "Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran," Energy, Elsevier, vol. 35(12), pages 5223-5229.
    10. Jiao, Bin & Lian, Zhigang & Gu, Xingsheng, 2008. "A dynamic inertia weight particle swarm optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 698-705.
    11. Zhang, Shu & Wang, Yi & Zhang, Yutian & Wang, Dan & Zhang, Ning, 2020. "Load probability density forecasting by transforming and combining quantile forecasts," Applied Energy, Elsevier, vol. 277(C).
    12. Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
    13. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Man-Wen Tian & Khalid Alattas & Fayez El-Sousy & Abdullah Alanazi & Ardashir Mohammadzadeh & Jafar Tavoosi & Saleh Mobayen & Paweł Skruch, 2022. "A New Short Term Electrical Load Forecasting by Type-2 Fuzzy Neural Networks," Energies, MDPI, vol. 15(9), pages 1-14, April.
    2. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    3. Jingming Su & Xuguang Han & Yan Hong, 2023. "Short Term Power Load Forecasting Based on PSVMD-CGA Model," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    4. Taorong Jia & Lixiao Yao & Guoqing Yang & Qi He, 2022. "A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    5. Huazhu Xue & Hui Wu & Guotao Dong & Jianjun Gao, 2023. "A Hybrid Forecasting Model to Simulate the Runoff of the Upper Heihe River," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    6. Andriy Chaban & Marek Lis & Andrzej Szafraniec & Vitaliy Levoniuk, 2022. "An Application of the Hamilton–Ostrogradsky Principle to the Modeling of an Asymmetrically Loaded Three-Phase Power Line," Energies, MDPI, vol. 15(21), pages 1-19, November.
    7. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Dimitrios Kontogiannis & Athanasios Fevgas & Miltiadis Alamaniotis, 2022. "Optimized Data-Driven Models for Short-Term Electricity Price Forecasting Based on Signal Decomposition and Clustering Techniques," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yaoyao & Cao, Chaojin & Wang, Shuo & Fu, Hong, 2022. "Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems," Applied Energy, Elsevier, vol. 322(C).
    2. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    3. Brusaferri, Alessandro & Matteucci, Matteo & Spinelli, Stefano & Vitali, Andrea, 2022. "Probabilistic electric load forecasting through Bayesian Mixture Density Networks," Applied Energy, Elsevier, vol. 309(C).
    4. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    5. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    6. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    7. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    8. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    9. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    10. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    11. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    12. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
    13. Lemos-Vinasco, Julian & Bacher, Peder & Møller, Jan Kloppenborg, 2021. "Probabilistic load forecasting considering temporal correlation: Online models for the prediction of households’ electrical load," Applied Energy, Elsevier, vol. 303(C).
    14. Jiang, Weiheng & Wu, Xiaogang & Gong, Yi & Yu, Wanxin & Zhong, Xinhui, 2020. "Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption," Energy, Elsevier, vol. 193(C).
    15. Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
    16. Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
    17. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    18. Xiao, Wenjing & Mo, Li & Xu, Zhanxing & Liu, Chang & Zhang, Yongchuan, 2024. "A hybrid electric load forecasting model based on decomposition considering fisher information," Applied Energy, Elsevier, vol. 364(C).
    19. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    20. Wei, Zhongbao & Li, Xiaolu & Xu, Lijun & Cheng, Yanting, 2013. "Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 683-692.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4890-:d:611990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.