IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4859-d611150.html
   My bibliography  Save this article

Which Strategy Saves the Most Energy for Stratified Water Heaters?

Author

Listed:
  • Michael J. Ritchie

    (Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7602, South Africa)

  • Jacobus A. A. Engelbrecht

    (Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7602, South Africa)

  • M. J. (Thinus) Booysen

    (Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7602, South Africa)

Abstract

The operation of water heating uses a substantial amount of energy and is responsible for 30% of a household’s overall electricity consumption. Determining methods of reducing energy demand is crucial for countries such as South Africa, where energy supply is almost exclusively electrical, 88% of it is generated by coal, and energy deficits cause frequent blackouts. Decreasing the energy consumption of tanked water heaters can be achieved by reducing the standing losses and thermal energy of the hot water used. In this paper, we evaluate various energy-saving strategies that have commonly been used and determine which strategy is best. These strategies include optimising the heating schedule, lowering the set-point temperature, reducing the volume of hot water used, and installing additional thermal insulation. The results show that the best strategy was providing optimal control of the heating element, and savings of 16.3% were achieved. This study also determined that the magnitude of energy savings is heavily dependent on a household’s water usage intensity and seasonality.

Suggested Citation

  • Michael J. Ritchie & Jacobus A. A. Engelbrecht & M. J. (Thinus) Booysen, 2021. "Which Strategy Saves the Most Energy for Stratified Water Heaters?," Energies, MDPI, vol. 14(16), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4859-:d:611150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haase, Patrick & Thomas, Bernd, 2021. "Test and optimization of a control algorithm for demand-oriented operation of CHP units using hardware-in-the-loop," Applied Energy, Elsevier, vol. 294(C).
    2. Wassim Salameh & Jalal Faraj & Elias Harika & Rabih Murr & Mahmoud Khaled, 2021. "On the Optimization of Electrical Water Heaters: Modelling Simulations and Experimentation," Energies, MDPI, vol. 14(13), pages 1-12, June.
    3. Gerardo J. Osório & Miadreza Shafie-khah & Gonçalo C. R. Carvalho & João P. S. Catalão, 2019. "Analysis Application of Controllable Load Appliances Management in a Smart Home," Energies, MDPI, vol. 12(19), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael J. Ritchie & Jacobus A. A. Engelbrecht & Marthinus J. Booysen, 2022. "Centrally Adapted Optimal Control of Multiple Electric Water Heaters," Energies, MDPI, vol. 15(4), pages 1-24, February.
    2. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    3. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    4. Chen, Liudong & Liu, Nian & Li, Chenchen & Wu, Lei & Chen, Yubing, 2021. "Multi-party stochastic energy scheduling for industrial integrated energy systems considering thermal delay and thermoelectric coupling," Applied Energy, Elsevier, vol. 304(C).
    5. Stefano Leonori & Luca Baldini & Antonello Rizzi & Fabio Massimo Frattale Mascioli, 2021. "A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells," Energies, MDPI, vol. 14(21), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4859-:d:611150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.