IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4778-d609461.html
   My bibliography  Save this article

Necessity Analysis of Bypass Diode for AC Module under Partial Shading Condition

Author

Listed:
  • Huixue Ren

    (State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101499, China)

  • Peide Han

    (State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101499, China)

Abstract

To protect a photovoltaic module from the hot spot effect more efficiently, an AC (alternating current) module that contains a module-level MPPT (maximum power point tracking) has been put forward. In this paper, operation states of shadowed solar cells and relevant bypass diodes were studied through MATLAB/Simulink tools, and a commercial PV module was used to reveal the temperature change when working at different LMPP (local maximum power point). Experiment results show that bypass diode can reduce power loss for the AC module to some extent but has a limited effect on protecting the AC module from the hot spot effect. Instead, it is more likely to form a local hot spot when the bypass diode turns on, and the worst shading condition for the AC module with bypass diode is about 46.5% during work states.

Suggested Citation

  • Huixue Ren & Peide Han, 2021. "Necessity Analysis of Bypass Diode for AC Module under Partial Shading Condition," Energies, MDPI, vol. 14(16), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4778-:d:609461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhen & Wu, Jun & Wang, Lei & Liu, Fuguang & Jia, Peng & Dai, Lei & Lu, Yue & Bian, Tiezheng, 2020. "The analysis on simulation and invalidation of hot-spot temperature distribution in micro-defective crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 147(P1), pages 2218-2228.
    2. Pieter Bauwens & Jan Doutreloigne, 2016. "NMOS-Based Integrated Modular Bypass for Use in Solar Systems (NIMBUS): Intelligent Bypass for Reducing Partial Shading Power Loss in Solar Panel Applications," Energies, MDPI, vol. 9(6), pages 1-15, June.
    3. Bana, Sangram & Saini, R.P., 2017. "Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios," Energy, Elsevier, vol. 127(C), pages 438-453.
    4. Zheng, Huiying & Li, Shuhui & Challoo, Rajab & Proano, Julio, 2014. "Shading and bypass diode impacts to energy extraction of PV arrays under different converter configurations," Renewable Energy, Elsevier, vol. 68(C), pages 58-66.
    5. Trzmiel, G. & Głuchy, D. & Kurz, D., 2020. "The impact of shading on the exploitation of photovoltaic installations," Renewable Energy, Elsevier, vol. 153(C), pages 480-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    2. Chepp, Ellen David & Gasparin, Fabiano Perin & Krenzinger, Arno, 2022. "Improvements in methods for analysis of partially shaded PV modules," Renewable Energy, Elsevier, vol. 200(C), pages 900-910.
    3. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Liu, Ruimiao & Liu, Zhongbing & Xiong, Wei & Zhang, Ling & Zhao, Chengliang & Yin, Yingde, 2024. "Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts," Energy, Elsevier, vol. 288(C).
    5. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    6. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    7. Pieter Bauwens & Jan Doutreloigne, 2019. "Switch for the Optimization of Module Power by Reconfiguration of All Strings (SOMBRA): An Insulated Integrated Switch for a Reconfigurable Solar Panel," Energies, MDPI, vol. 12(21), pages 1-17, November.
    8. Yilmaz, Saban & Dincer, Furkan, 2017. "Impact of inverter capacity on the performance in large-scale photovoltaic power plants – A case study for Gainesville, Florida," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 15-23.
    9. Ahmed Al Mansur & Md. Ruhul Amin & Molla Shahadat Hossain Lipu & Md. Imamul Islam & Ratil H. Ashique & Zubaeer Bin Shams & Mohammad Asif ul Haq & Md. Hasan Maruf & ASM Shihavuddin, 2023. "The Effects of Non-Uniformly-Aged Photovoltaic Array on Mismatch Power Loss: A Practical Investigation towards Novel Hybrid Array Configurations," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    10. Qiong Wu & Xiaofeng Zhang & Qi Wang, 2024. "Integrating Renewable Energy in Transportation: Challenges, Solutions, and Future Prospects on Photovoltaic Noise Barriers," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    11. Zhongfu Zhou & John Macaulay, 2017. "An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply," Energies, MDPI, vol. 10(12), pages 1-20, December.
    12. Mehdi Seyedmahmoudian & Gokul Sidarth Thirunavukkarasu & Elmira Jamei & Tey Kok Soon & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2020. "A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    13. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    14. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Mahmoud Qadi & Montaser Shadid & Aiman Albatayneh & Hüseyin Çamur & Amos García-Cruz & Francisco Manzano-Agugliaro, 2022. "The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine," Energies, MDPI, vol. 15(12), pages 1-18, June.
    15. Ghoname Abdullah & Hidekazu Nishimura & Toshio Fujita, 2021. "An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-14, April.
    16. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    17. Fathy, Ahmed & Elaziz, Mohamed Abd & Sayed, Enas Taha & Olabi, A.G. & Rezk, Hegazy, 2019. "Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm," Energy, Elsevier, vol. 188(C).
    18. Reddy, S. Sreekantha & Yammani, Chandrasekhar, 2020. "Odd-Even-Prime pattern for PV array to increase power output under partial shading conditions," Energy, Elsevier, vol. 213(C).
    19. Belqasem Aljafari & Rupendra Kumar Pachauri & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2023. "Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation," Sustainability, MDPI, vol. 15(15), pages 1-28, August.
    20. Tabanjat, Abdulkader & Becherif, Mohamed & Hissel, Daniel, 2015. "Reconfiguration solution for shaded PV panels using switching control," Renewable Energy, Elsevier, vol. 82(C), pages 4-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4778-:d:609461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.