IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4720-d607910.html
   My bibliography  Save this article

The Role and Place of Traditional Chimney System Solutions in Environmental Progress and in Reducing Energy Consumption

Author

Listed:
  • Dariusz Bajno

    (Department of Building Structures, Faculty of Civil and Environmental Engineering and Architecture, University of Science and Technology, 85796 Bydgoszcz, Poland)

  • Łukasz Bednarz

    (Department of Building Structures, Faculty of Civil Engineering, Wrocław University of Science and Technology, 50370 Wrocław, Poland)

  • Agnieszka Grzybowska

    (Department of Building Structures, Faculty of Civil and Environmental Engineering and Architecture, University of Science and Technology, 85796 Bydgoszcz, Poland)

Abstract

Buildings, energy, and the environment are key issues facing construction around the world. The energy efficiency of buildings is a key topic when it comes to reducing the world’s energy consumption, releasing harmful gases, and global climate change, as they consume about 40% of the world’s energy supplies. Heat losses in buildings reduce the energy performance of buildings and are basically important to them. In the paper, the authors focus on the main problems related to heat losses generated by chimney systems, which are inseparable equipment of building structures, resulting in lower energy efficiency and, at the same time, technical efficiency and durability of the building partitions themselves. Authors present thermal imaging with its contribution to the detection of heat losses, thermal bridges, insulation problems, and other performance disturbances, and then verifications using appropriate simulation models. The mathematical apparatus of artificial neural networks was implemented to predict the temperature distributions on the surfaces of prefabricated chimney solutions. In Europe, we can often find a large building substance equipped with traditional chimneys, which disrupts the current trend of striving to reduce energy consumption, especially that derived from fossil fuels. Speaking of energy-efficient buildings, one should not ignore those that, without additional security and modern installations, are constantly used in a very wide range. Therefore, the article deals with an essential problem that is not perceived in design studies and during the operation period as having a basis in incorrect architectural solutions and which can be easily eliminated. It concerns the cooling of internal partitions of buildings on their last storeys, in places where chimneys are located, regardless of their function. The authors of the paper decided to take a closer look at this phenomenon, which may allow the limiting of its effects and at the same time reduce its impact on the energy performance of technologically older buildings.

Suggested Citation

  • Dariusz Bajno & Łukasz Bednarz & Agnieszka Grzybowska, 2021. "The Role and Place of Traditional Chimney System Solutions in Environmental Progress and in Reducing Energy Consumption," Energies, MDPI, vol. 14(16), pages 1-32, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4720-:d:607910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    3. Abolfazl Rezaei & Bahador Samadzadegan & Hadise Rasoulian & Saeed Ranjbar & Soroush Samareh Abolhassani & Azin Sanei & Ursula Eicker, 2021. "A New Modeling Approach for Low-Carbon District Energy System Planning," Energies, MDPI, vol. 14(5), pages 1-22, March.
    4. Pau Chung Leng & Gabriel Hoh Teck Ling & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Eeydzah Aminudin & Weng Howe Chan & Dg Normaswanna Tawasil, 2020. "Thermal Performance of Single-Story Air-Welled Terraced House in Malaysia: A Field Measurement Approach," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    5. Zygmunt Lipnicki & Marta Gortych & Anna Staszczuk & Tadeusz Kuczyński & Piotr Grabas, 2019. "Analytical and Experimental Investigation of the Solar Chimney System," Energies, MDPI, vol. 12(11), pages 1-13, May.
    6. Przemysław Motyl & Marcin Wikło & Julita Bukalska & Bartosz Piechnik & Rafał Kalbarczyk, 2020. "A New Design for Wood Stoves Based on Numerical Analysis and Experimental Research," Energies, MDPI, vol. 13(5), pages 1-11, February.
    7. Ferdinando Salata & Chiara Alippi & Anna Tarsitano & Iacopo Golasi & Massimo Coppi, 2015. "A First Approach to Natural Thermoventilation of Residential Buildings through Ventilation Chimneys Supplied by Solar Ponds," Sustainability, MDPI, vol. 7(7), pages 1-15, July.
    8. Zeyad Amin Al-Absi & Mohd Isa Mohd Hafizal & Mazran Ismail & Azhar Ghazali, 2021. "Towards Sustainable Development: Building’s Retrofitting with PCMs to Enhance the Indoor Thermal Comfort in Tropical Climate, Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    9. Alessandra Bonoli & Sara Zanni & Francisco Serrano-Bernardo, 2021. "Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    2. Dariusz Bajno & Agnieszka Grzybowska & Łukasz Bednarz, 2021. "Old and Modern Wooden Buildings in the Context of Sustainable Development," Energies, MDPI, vol. 14(18), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability, Springer, vol. 3(1), pages 125-166, March.
    2. Afaq Hyder Chohan & Jihad Awad, 2022. "Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    3. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    4. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    5. Aleksandra Stachera & Adam Stolarski & Mariusz Owczarek & Marek Telejko, 2022. "A Method of Multi-Criteria Assessment of the Building Energy Consumption," Energies, MDPI, vol. 16(1), pages 1-32, December.
    6. Zhang, Guangming & Zhang, Chao & Wang, Wei & Cao, Huan & Chen, Zhenyu & Niu, Yuguang, 2023. "Offline reinforcement learning control for electricity and heat coordination in a supercritical CHP unit," Energy, Elsevier, vol. 266(C).
    7. Jaime A. Mesa & Carlos Fúquene-Retamoso & Aníbal Maury-Ramírez, 2021. "Life Cycle Assessment on Construction and Demolition Waste: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    8. Manfren, Massimiliano & Nastasi, Benedetto, 2023. "Interpretable data-driven building load profiles modelling for Measurement and Verification 2.0," Energy, Elsevier, vol. 283(C).
    9. Gregor Becker & Christian Klemm & Peter Vennemann, 2022. "Open Source District Heating Modeling Tools—A Comparative Study," Energies, MDPI, vol. 15(21), pages 1-20, November.
    10. Aldona Skotnicka-Siepsiak, 2021. "An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers," Energies, MDPI, vol. 15(1), pages 1-19, December.
    11. Iacopo Golasi & Ferdinando Salata & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices," Energies, MDPI, vol. 9(7), pages 1-16, July.
    12. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    13. Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
    14. Zhang, Haihua & Tao, Yao & Zhang, Guomin & Li, Jie & Setunge, Sujeeva & Shi, Long, 2022. "Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach," Energy, Elsevier, vol. 261(PA).
    15. Constantin Torcătoru & Dan Săvescu & Angela Repanovici, 2022. "Literature Review by Scientometric Methods on the Impact of the Circular Economy on Sustainable Industrial Products," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    16. Silvia Serranti & Roberta Palmieri & Giuseppe Bonifazi & Riccardo Gasbarrone & Gauthier Hermant & Herve Bréquel, 2023. "An Automated Classification of Recycled Aggregates for the Evaluation of Product Standard Compliance," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    17. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Rajkumar, G. & Saravanan, M. & Marimuthu, P., 2023. "Developing a numerical model to analyze the production process of PMEDM," Resources Policy, Elsevier, vol. 80(C).
    19. Zhou, Kai & Leng, Jia-Wei, 2023. "State-of-the-art research of performance-driven architectural design for low-carbon urban underground space: Systematic review and proposed design strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    20. Nasanjargal Erdenekhuu & Balázs Kocsi & Domicián Máté, 2022. "A Risk-Based Analysis Approach to Sustainable Construction by Environmental Impacts," Energies, MDPI, vol. 15(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4720-:d:607910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.