IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4493-d601092.html
   My bibliography  Save this article

Miscanthus to Biocarbon for Canadian Iron and Steel Industries: An Innovative Approach

Author

Listed:
  • Trishan Deb Abhi

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Omid Norouzi

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Kevin Macdermid-Watts

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Mohammad Heidari

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Syeda Tasnim

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Animesh Dutta

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

Abstract

Iron-based industries are one of the main contributors to greenhouse gas (GHG) emissions. Partial substitution of fossil carbon with renewable biocarbon (biomass) into the blast furnace (BF) process can be a sustainable approach to mitigating GHG emissions from the ironmaking process. However, the main barriers of using biomass for this purpose are the inherent high alkaline and phosphorous contents in ash, resulting in fouling, slagging, and scaling on the BF surface. Furthermore, the carbon content of the biomass is considerably lower than coal. To address these barriers, this research proposed an innovative approach of combining two thermochemical conversion methods, namely hydrothermal carbonization (HTC) and slow pyrolysis, for converting biomass into suitable biocarbon for the ironmaking process. Miscanthus, which is one of the most abundant herbaceous biomass sources, was first treated by HTC to obtain the lowest possible ash content mainly due to reduction in alkali matter and phosphorous contents, and then subjected to slow pyrolysis to increase the carbon content. Design expert 11 was used to plan the number of the required experiments and to find the optimal condition for HTC and pyrolysis steps. It was found that the biocarbon obtained from HTC at 199 °C for 28 min and consecutively pyrolyzed at 400 °C for 30 min showed similar properties to pulverized coal injection (PCI) which is currently used in BFs due to its low ash content (0.19%) and high carbon content (79.67%).

Suggested Citation

  • Trishan Deb Abhi & Omid Norouzi & Kevin Macdermid-Watts & Mohammad Heidari & Syeda Tasnim & Animesh Dutta, 2021. "Miscanthus to Biocarbon for Canadian Iron and Steel Industries: An Innovative Approach," Energies, MDPI, vol. 14(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4493-:d:601092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaushlendra Singh & Litha Sivanandan, 2014. "Hydrothermal Carbonization of Spent Osmotic Solution (SOS) Generated from Osmotic Dehydration of Blueberries," Agriculture, MDPI, vol. 4(3), pages 1-21, September.
    2. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    3. Bide Zhang & Mohammad Heidari & Bharat Regmi & Shakirudeen Salaudeen & Precious Arku & Mahendra Thimmannagari & Animesh Dutta, 2018. "Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar," Energies, MDPI, vol. 11(8), pages 1-14, August.
    4. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    5. Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
    6. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    7. Nizamuddin, Sabzoi & Baloch, Humair Ahmed & Griffin, G.J. & Mubarak, N.M. & Bhutto, Abdul Waheed & Abro, Rashid & Mazari, Shaukat Ali & Ali, Brahim Si, 2017. "An overview of effect of process parameters on hydrothermal carbonization of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1289-1299.
    8. Ramy Gamgoum & Animesh Dutta & Rafael M. Santos & Yi Wai Chiang, 2016. "Hydrothermal Conversion of Neutral Sulfite Semi-Chemical Red Liquor into Hydrochar," Energies, MDPI, vol. 9(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gyeong-Min Kim & Jae Hyung Choi & Chung-Hwan Jeon & Dong-Ha Lim, 2022. "Effects of Cofiring Coal and Biomass Fuel on the Pulverized Coal Injection Combustion Zone in Blast Furnaces," Energies, MDPI, vol. 15(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Isaac Lorero & Arturo J. Vizcaíno & Francisco J. Alguacil & Félix A. López, 2020. "Activated Carbon from Winemaking Waste: Thermoeconomic Analysis for Large-Scale Production," Energies, MDPI, vol. 13(23), pages 1-22, December.
    3. Andrade, Carlos & Desport, Lucas & Selosse, Sandrine, 2024. "Net-negative emission opportunities for the iron and steel industry on a global scale," Applied Energy, Elsevier, vol. 358(C).
    4. Mitchell Ubene & Mohammad Heidari & Animesh Dutta, 2022. "Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review," Energies, MDPI, vol. 15(6), pages 1-28, March.
    5. Shrestha, Ankita & Acharya, Bishnu & Farooque, Aitazaz A., 2021. "Study of hydrochar and process water from hydrothermal carbonization of sea lettuce," Renewable Energy, Elsevier, vol. 163(C), pages 589-598.
    6. Dhananjay Bhatt & Ankita Shrestha & Raj Kumar Dahal & Bishnu Acharya & Prabir Basu & Richard MacEwen, 2018. "Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant," Energies, MDPI, vol. 11(9), pages 1-10, August.
    7. Elsayed Mousa & Kurt Sjöblom, 2022. "Modeling and Optimization of Biochar Injection into Blast Furnace to Mitigate the Fossil CO 2 Emission," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    8. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    9. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2024. "Biocarbon Production Using Three-Stage Pyrolysis and Its Preliminary Suitability to the Iron and Steel Industry," Energies, MDPI, vol. 17(13), pages 1-21, June.
    10. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
    12. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Bide Zhang & Mohammad Heidari & Bharat Regmi & Shakirudeen Salaudeen & Precious Arku & Mahendra Thimmannagari & Animesh Dutta, 2018. "Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar," Energies, MDPI, vol. 11(8), pages 1-14, August.
    14. Salaudeen, Shakirudeen A. & Acharya, Bishnu & Dutta, Animesh, 2021. "Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes," Renewable Energy, Elsevier, vol. 171(C), pages 582-591.
    15. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2014. "Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost," Applied Energy, Elsevier, vol. 124(C), pages 82-93.
    16. Wang, R.Q. & Jiang, L. & Wang, Y.D. & Font-Palma, C. & Skoulou, V. & Roskilly, A.P., 2024. "Woody biomass waste derivatives in decarbonised blast furnace ironmaking process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
    18. Yuchiao Lu & Hanmin Yang & Andrey V. Karasev & Chuan Wang & Pär G. Jönsson, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 1: Characterization of Carbonaceous Materials," Sustainability, MDPI, vol. 14(15), pages 1-27, August.
    19. Ma, Peiyong & Yang, Jing & Xing, Xianjun & Weihrich, Sebastian & Fan, Fangyu & Zhang, Xianwen, 2017. "Isoconversional kinetics and characteristics of combustion on hydrothermally treated biomass," Renewable Energy, Elsevier, vol. 114(PB), pages 1069-1076.
    20. Zhang, Deli & Sun, Zhijing & Fu, Hongyue & Liu, Zhenfei & Wang, Fang & Zeng, Jianfei & Yi, Weiming, 2024. "Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4493-:d:601092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.