IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4397-d598451.html
   My bibliography  Save this article

Neural Network-Based Control for Hybrid PV and Ternary Pumped-Storage Hydro Plants

Author

Listed:
  • Soumyadeep Nag

    (School of Engineering and Computer science, Baylor University, Waco, TX 76706, USA)

  • Kwang Y. Lee

    (School of Engineering and Computer science, Baylor University, Waco, TX 76706, USA)

Abstract

The growth in renewable energy integration over the past few years, primarily fueled by the drop in capital cost, has revealed the requirement for more sustainable methods of integration. This paper presents a collocated hybrid plant consisting of solar photovoltaic (PV) and Ternary pumped-storage hydro (TPSH) and designs controls that integrate the PV plant such that the behavior and the controllability of the hybrid plant are similar to those of a conventional plant within operational constraints. The PV array control and hybrid plant control implement a neural–network-based framework to coordinate the response, de-loading, and curtailment of multiple arrays with the response of the TPSH. With the help of the designed controls, a symbiotic relationship is developed between the two energy resources, where the PV compensates for the TPSH nonlinearities and provides required speed of response, while the TPSH firms the PV system and allows the PV to be integrated using its existing infrastructure. Simulations demonstrate that the designed controls enable the PV system to track references, while the TPSH’s firming and shifting transforms the PV system into a base load plant for most of the day and extends its hours of operation.

Suggested Citation

  • Soumyadeep Nag & Kwang Y. Lee, 2021. "Neural Network-Based Control for Hybrid PV and Ternary Pumped-Storage Hydro Plants," Energies, MDPI, vol. 14(15), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4397-:d:598451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soumyadeep Nag & Kwang Y. Lee & D. Suchitra, 2019. "A Comparison of the Dynamic Performance of Conventional and Ternary Pumped Storage Hydro," Energies, MDPI, vol. 12(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    2. John Cimbala & Bryan Lewis, 2022. "Advancements in Hydropower Design and Operation for Present and Future Electrical Demand," Energies, MDPI, vol. 15(7), pages 1-2, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfei Wu & Jianfeng Liu & Jian Zhou, 2022. "The Strategy of Considering the Participation of Doubly-Fed Pumped-Storage Units in Power Grid Frequency Regulation," Energies, MDPI, vol. 15(6), pages 1-16, March.
    2. Michela Robba & Mansueto Rossi, 2021. "Optimal Control of Hybrid Systems and Renewable Energies," Energies, MDPI, vol. 15(1), pages 1-3, December.
    3. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Kangyu Deng & Kai Zhang & Xinran Xue & Hui Zhou, 2019. "Design of a New Compressed Air Energy Storage System with Constant Gas Pressure and Temperature for Application in Coal Mine Roadways," Energies, MDPI, vol. 12(21), pages 1-14, November.
    5. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.
    6. Soumyadeep Nag & Kwang Y. Lee, 2020. "Network and Reserve Constrained Economic Analysis of Conventional, Adjustable-Speed and Ternary Pumped-Storage Hydropower," Energies, MDPI, vol. 13(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4397-:d:598451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.