IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4140-d397259.html
   My bibliography  Save this article

Network and Reserve Constrained Economic Analysis of Conventional, Adjustable-Speed and Ternary Pumped-Storage Hydropower

Author

Listed:
  • Soumyadeep Nag

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA)

  • Kwang Y. Lee

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA)

Abstract

With increasing renewable penetration and projected increase in natural disasters, the reliability and resiliency of a power system become crucial issues. As network inertia drops with increasing penetration of renewables, operators search for flexible resources that can help cope with a disruptive event or manage renewable intermittency. Energy storage is a solution, but the type of storage solution needs to be profitable to exist in the current and upcoming power markets. Advanced pumped-storage hydropower (PSH) is one solution that can help cope with such requirements, which will in turn help to increase the renewable penetration in the system. This paper qualitatively compares the revenue earning potential of PSH configurations, including, adjustable-speed PSH (AS-PSH) and ternary PSH (T-PSH) in comparison to conventional PSH (C-PSH) from the arbitrage and regulation markets, with and without the presence of wind penetration. In addition, a framework for quantitative analysis of any energy storage system has been proposed. A 24-bus RTS system is studied with summer and winter variations in load and wind power. Through revenue and operational mode analysis, this paper reveals that T-PSH has the highest revenue earning potential, which is mainly due to its ability to operate with a hydraulic short circuit.

Suggested Citation

  • Soumyadeep Nag & Kwang Y. Lee, 2020. "Network and Reserve Constrained Economic Analysis of Conventional, Adjustable-Speed and Ternary Pumped-Storage Hydropower," Energies, MDPI, vol. 13(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4140-:d:397259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soumyadeep Nag & Kwang Y. Lee & D. Suchitra, 2019. "A Comparison of the Dynamic Performance of Conventional and Ternary Pumped Storage Hydro," Energies, MDPI, vol. 12(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woo-Jung Kim & Yu-Seok Lee & Yeong-Han Chun & Hae-Seong Jeong, 2022. "Reserve-Constrained Unit Commitment Considering Adjustable-Speed Pumped-Storage Hydropower and Its Economic Effect in Korean Power System," Energies, MDPI, vol. 15(7), pages 1-23, March.
    2. Dai Cui & Fei Xu & Weichun Ge & Pengxiang Huang & Yunhai Zhou, 2020. "A Coordinated Dispatching Model Considering Generation and Operation Reserve in Wind Power-Photovoltaic-Pumped Storage System," Energies, MDPI, vol. 13(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfei Wu & Jianfeng Liu & Jian Zhou, 2022. "The Strategy of Considering the Participation of Doubly-Fed Pumped-Storage Units in Power Grid Frequency Regulation," Energies, MDPI, vol. 15(6), pages 1-16, March.
    2. Michela Robba & Mansueto Rossi, 2021. "Optimal Control of Hybrid Systems and Renewable Energies," Energies, MDPI, vol. 15(1), pages 1-3, December.
    3. Soumyadeep Nag & Kwang Y. Lee, 2021. "Neural Network-Based Control for Hybrid PV and Ternary Pumped-Storage Hydro Plants," Energies, MDPI, vol. 14(15), pages 1-23, July.
    4. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    5. Kangyu Deng & Kai Zhang & Xinran Xue & Hui Zhou, 2019. "Design of a New Compressed Air Energy Storage System with Constant Gas Pressure and Temperature for Application in Coal Mine Roadways," Energies, MDPI, vol. 12(21), pages 1-14, November.
    6. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4140-:d:397259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.