IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4378-d597954.html
   My bibliography  Save this article

Robust Multi-Step Predictor for Electricity Markets with Real-Time Pricing

Author

Listed:
  • Sachin Kahawala

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3083, Australia)

  • Daswin De Silva

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3083, Australia)

  • Seppo Sierla

    (Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Espoo, Finland)

  • Damminda Alahakoon

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3083, Australia)

  • Rashmika Nawaratne

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3083, Australia)

  • Evgeny Osipov

    (Department of Computer Science, Electrical and Space Engineering, Luleå Tekniska Universitet, SE-97187 Luleå, Sweden)

  • Andrew Jennings

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3083, Australia)

  • Valeriy Vyatkin

    (Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Espoo, Finland
    Department of Computer Science, Electrical and Space Engineering, Luleå Tekniska Universitet, SE-97187 Luleå, Sweden)

Abstract

Real-time electricity pricing mechanisms are emerging as a key component of the smart grid. However, prior work has not fully addressed the challenges of multi-step prediction (Predicting multiple time steps into the future) that is accurate, robust and real-time. This paper proposes a novel Artificial Intelligence-based approach, Robust Intelligent Price Prediction in Real-time (RIPPR), that overcomes these challenges. RIPPR utilizes Variational Mode Decomposition (VMD) to transform the spot price data stream into sub-series that are optimized for robustness using the particle swarm optimization (PSO) algorithm. These sub-series are inputted to a Random Vector Functional Link neural network algorithm for real-time multi-step prediction. A mirror extension removal of VMD, including continuous and discrete spaces in the PSO, is a further novel contribution that improves the effectiveness of RIPPR. The superiority of the proposed RIPPR is demonstrated using three empirical studies of multi-step price prediction of the Australian electricity market.

Suggested Citation

  • Sachin Kahawala & Daswin De Silva & Seppo Sierla & Damminda Alahakoon & Rashmika Nawaratne & Evgeny Osipov & Andrew Jennings & Valeriy Vyatkin, 2021. "Robust Multi-Step Predictor for Electricity Markets with Real-Time Pricing," Energies, MDPI, vol. 14(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4378-:d:597954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    2. Petrollese, Mario & Valverde, Luis & Cocco, Daniele & Cau, Giorgio & Guerra, José, 2016. "Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid," Applied Energy, Elsevier, vol. 166(C), pages 96-106.
    3. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    4. Wang, Fei & Ge, Xinxin & Yang, Peng & Li, Kangping & Mi, Zengqiang & Siano, Pierluigi & Duić, Neven, 2020. "Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing," Energy, Elsevier, vol. 213(C).
    5. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    6. Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
    7. Kaijian He & Hongqian Wang & Jiangze Du & Yingchao Zou, 2016. "Forecasting Electricity Market Risk Using Empirical Mode Decomposition (EMD)—Based Multiscale Methodology," Energies, MDPI, vol. 9(11), pages 1-11, November.
    8. Florian Kuhnlenz & Pedro H. J. Nardelli & Santtu Karhinen & Rauli Svento, 2017. "Implementing Flexible Demand: Real-time Price vs. Market Integration," Papers 1709.02667, arXiv.org, revised Feb 2018.
    9. Elma, Onur & Taşcıkaraoğlu, Akın & Tahir İnce, A. & Selamoğulları, Uğur S., 2017. "Implementation of a dynamic energy management system using real time pricing and local renewable energy generation forecasts," Energy, Elsevier, vol. 134(C), pages 206-220.
    10. Forrest, Sam & MacGill, Iain, 2013. "Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 120-132.
    11. Jallal, Mohammed Ali & González-Vidal, Aurora & Skarmeta, Antonio F. & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction," Applied Energy, Elsevier, vol. 268(C).
    12. García-Ascanio, Carolina & Maté, Carlos, 2010. "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, Elsevier, vol. 38(2), pages 715-725, February.
    13. Anand, Hithu & Ramasubbu, Rengaraj, 2018. "A real time pricing strategy for remote micro-grid with economic emission dispatch and stochastic renewable energy sources," Renewable Energy, Elsevier, vol. 127(C), pages 779-789.
    14. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    15. Kühnlenz, Florian & Nardelli, Pedro H.J. & Karhinen, Santtu & Svento, Rauli, 2018. "Implementing flexible demand: Real-time price vs. market integration," Energy, Elsevier, vol. 149(C), pages 550-565.
    16. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    17. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    18. Botelho, D.F. & Dias, B.H. & de Oliveira, L.W. & Soares, T.A. & Rezende, I. & Sousa, T., 2021. "Innovative business models as drivers for prosumers integration - Enablers and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Li, Zhigang & Qiu, Feng & Wang, Jianhui, 2016. "Data-driven real-time power dispatch for maximizing variable renewable generation," Applied Energy, Elsevier, vol. 170(C), pages 304-313.
    20. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    21. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    22. Thilker, Christian Ankerstjerne & Madsen, Henrik & Jørgensen, John Bagterp, 2021. "Advanced forecasting and disturbance modelling for model predictive control of smart energy systems," Applied Energy, Elsevier, vol. 292(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Dong & Xihao Dou & Aruhan Bao & Yaoyu Zhang & Dongran Liu, 2022. "Day-Ahead Spot Market Price Forecast Based on a Hybrid Extreme Learning Machine Technique: A Case Study in China," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    2. Harri Aaltonen & Seppo Sierla & Ville Kyrki & Mahdi Pourakbari-Kasmaei & Valeriy Vyatkin, 2022. "Bidding a Battery on Electricity Markets and Minimizing Battery Aging Costs: A Reinforcement Learning Approach," Energies, MDPI, vol. 15(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    2. Yin, Linfei & Qiu, Yao, 2022. "Long-term price guidance mechanism of flexible energy service providers based on stochastic differential methods," Energy, Elsevier, vol. 238(PB).
    3. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    4. Michaelis, Anne & Hanny, Lisa & Körner, Marc-Fabian & Strüker, Jens & Weibelzahl, Martin, 2024. "Consumer-centric electricity markets: Six design principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Yanbing Lin & Hongyuan Luo & Deyun Wang & Haixiang Guo & Kejun Zhu, 2017. "An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(8), pages 1-16, August.
    6. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    9. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    10. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    11. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    12. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    14. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    15. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.
    16. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    17. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    18. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    19. Thapelo Mosetlhe & Adedayo Ademola Yusuff, 2024. "Forecasting of Residential Energy Utilisation Based on Regression Machine Learning Schemes," Energies, MDPI, vol. 17(18), pages 1-9, September.
    20. Heydarian-Forushani, Ehsan & Golshan, Mohamad Esmail Hamedani & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "A comprehensive linear model for demand response optimization problem," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4378-:d:597954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.