IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4159-d591676.html
   My bibliography  Save this article

Fabrication and Performance Evaluation of Cold Thermal Energy Storage Tanks Operating in Water Chiller Air Conditioning System

Author

Listed:
  • Xuan Vien Nguyen

    (Department of Renewable Energy, HCMC University of Technology and Education, Ho Chi Minh City 700000, Vietnam)

Abstract

In this study, cold and thermal storage systems were designed and manufactured to operate in combination with the water chiller air-conditioning system of 105.5 kW capacity, with the aim of reducing operating costs and maximizing energy efficiency. The cold storage tank used a mixture of water and 10 wt.% glycerin as a phase-change material (PCM), while water was used as heat transfer fluid (HTF). The cold storage heat exchanger was made of polyvinyl chloride (PVC). On the other hand, the thermal storage tank used water as the storage fluid with a capacity of 50 L of hot water per hour. The thermal storage did not use a pump for water transfer through the heat exchanger, so as to save energy and operating costs. In this paper, the operating parameters of the cold and thermal storage tanks are shown according to the results of experimental research, including the temperatures of cooling and heating load, heat transfer fluid, and cold storage material during the discharge process, as well as the discharge duration. The system assisted the air conditioner in cooling the internship workshop space at the university with an area of 400 m 2 , contributing to a remarkable reduction in air-conditioning system operating costs during the daytime. Furthermore, the system recovered waste heat from the compressor of the water chiller, and a thermal storage system was successfully built and operated, providing 50 L of hot water at a temperature of 60 °C per hour to serve the everyday needs of school students. This design was suitable for the joint operation of cold and thermal storage tanks and the water chiller air-conditioning system for cooling and heating applications.

Suggested Citation

  • Xuan Vien Nguyen, 2021. "Fabrication and Performance Evaluation of Cold Thermal Energy Storage Tanks Operating in Water Chiller Air Conditioning System," Energies, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4159-:d:591676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
    2. Xie, Yingming & Li, Gang & Liu, Daoping & Liu, Ni & Qi, Yingxia & Liang, Deqing & Guo, Kaihua & Fan, Shuanshi, 2010. "Experimental study on a small scale of gas hydrate cold storage apparatus," Applied Energy, Elsevier, vol. 87(11), pages 3340-3346, November.
    3. Vitorino, Nuno & Abrantes, João C.C. & Frade, Jorge Ribeiro, 2013. "Gelled graphite/gelatin composites for latent heat cold storage," Applied Energy, Elsevier, vol. 104(C), pages 890-897.
    4. Pu, Jing & Liu, Guilian & Feng, Xiao, 2012. "Cumulative exergy analysis of ice thermal storage air conditioning system," Applied Energy, Elsevier, vol. 93(C), pages 564-569.
    5. Lee, Wen-Shing & Chen, Yi -Ting & Wu, Ting-Hau, 2009. "Optimization for ice-storage air-conditioning system using particle swarm algorithm," Applied Energy, Elsevier, vol. 86(9), pages 1589-1595, September.
    6. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    7. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis of a cascaded cold storage unit using multiple PCMs," Energy, Elsevier, vol. 143(C), pages 448-457.
    8. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Liu & Yuanji Li & Pan Wei & Tian Xiao & Xiangzhao Meng & Xiaohu Yang, 2022. "Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam," Energies, MDPI, vol. 15(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    2. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Zheng, Ziao & Huang, Bin & Lu, Gaofeng & Zhai, Xiaoqiang, 2022. "Design and optimization of an air-based phase change cold storage unit through cascaded construction for emergency cooling in IDC," Energy, Elsevier, vol. 241(C).
    4. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    5. Tian, Shen & Yang, Qifan & Hui, Na & Bai, Haozhi & Shao, Shuangquan & Liu, Shengchun, 2020. "Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes," Energy, Elsevier, vol. 205(C).
    6. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
    7. Caliano, Martina & Bianco, Nicola & Graditi, Giorgio & Mongibello, Luigi, 2019. "Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation," Applied Energy, Elsevier, vol. 256(C).
    8. Sheikholeslami, M. & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong, 2019. "Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 544-556.
    9. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    10. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    11. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    12. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Wang, Qiuwang, 2022. "Thermo-economic evaluation of PCM layer thickness change on the performance of the hybrid heat storage tank for concentrating solar power plants," Energy, Elsevier, vol. 253(C).
    13. Reyes, A. & Pailahueque, N. & Henríquez-Vargas, L. & Vásquez, J. & Sepúlveda, F., 2019. "Analysis of a multistage solar thermal energy accumulator," Renewable Energy, Elsevier, vol. 136(C), pages 621-631.
    14. Li, Xiao-Yan & Qu, Dong-Qi & Yang, Liu & Li, Kai-Di, 2017. "Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems," Applied Energy, Elsevier, vol. 189(C), pages 211-220.
    15. Said, M.A. & Hassan, Hamdy, 2018. "Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit," Applied Energy, Elsevier, vol. 230(C), pages 1380-1402.
    16. Xu, Bowen & Lu, Shilei & Wang, Ran & Zhai, Xue & Fan, Minchao & Jia, Wei & Du, Haibing, 2021. "Exergy analysis and optimization of charging–discharging processes for cascaded latent heat storage system," Energy, Elsevier, vol. 223(C).
    17. Cao, Hui & Lin, Jiajing & Li, Nan, 2023. "Optimal control and energy efficiency evaluation of district ice storage system," Energy, Elsevier, vol. 276(C).
    18. Pirvaram, A. & Sadrameli, S.M. & Abdolmaleki, L., 2019. "Energy management of a household refrigerator using eutectic environmental friendly PCMs in a cascaded condition," Energy, Elsevier, vol. 181(C), pages 321-330.
    19. Vittorio Tola & Simone Arena & Mario Cascetta & Giorgio Cau, 2020. "Numerical Investigation on a Packed-Bed LHTES System Integrated into a Micro Electrical and Thermal Grid," Energies, MDPI, vol. 13(8), pages 1-15, April.
    20. Elfeky, K.E. & Mohammed, A.G. & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2020. "Thermal and economic evaluation of phase change material volume fraction for thermocline tank used in concentrating solar power plants," Applied Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4159-:d:591676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.