IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4120-d590641.html
   My bibliography  Save this article

Holonic System Model for Resilient Energy Grid Operation

Author

Listed:
  • Rolf Egert

    (Telecooperation Lab, Technische Universität Darmstadt, 64289 Darmstadt, Germany)

  • Tim Grube

    (Telecooperation Lab, Technische Universität Darmstadt, 64289 Darmstadt, Germany)

  • Florian Volk

    (Department of Computer Science and Business Informatics, Provadis School of International Management and Technology, 65929 Frankfurt am Main, Germany)

  • Max Mühlhäuser

    (Telecooperation Lab, Technische Universität Darmstadt, 64289 Darmstadt, Germany)

Abstract

The transformation of energy grids towards smart grids is driven by numerous political, economic, and ecological goals. As part of this process, the centralized top-down architecture of energy grids changes towards increasingly decentralized structures. It is widely accepted that the challenges emerging from this transition threaten the resilient operation of energy grids. For instance, the volatility of renewable energy sources challenges the required balance between demand and supply; their distribution in the energy grid likewise complicates their coordination. Holarchies are a promising (systems-of-systems) architectural pattern for smart grids fostering fast isolation and self-sustained operation of subparts (so-called holons), as well as supporting dynamic reconfigurations of the grid’s structure. To leverage these properties to increase the resilience of smart grids, we propose a system model that combines a holonic architecture and locally available resources offered by prosumers. Our model organizes the participants in the grid as holarchy and enables the application of fine-grained control mechanisms. We show the capabilities of the model by resolving an overproduction situation and a situation of severe electricity scarcity using a modified binary ant colony optimization approach. Our evaluation with the simulation environment HOLEG shows that the system model and the proposed algorithm can quickly mitigate balancing problems in holonic energy grids.

Suggested Citation

  • Rolf Egert & Tim Grube & Florian Volk & Max Mühlhäuser, 2021. "Holonic System Model for Resilient Energy Grid Operation," Energies, MDPI, vol. 14(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4120-:d:590641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talaat, M. & Elkholy, M.H. & Farahat, M.A., 2020. "Operating reserve investigation for the integration of wave, solar and wind energies," Energy, Elsevier, vol. 197(C).
    2. Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2020. "Passive Fault-Tolerant Control Strategies for Power Converter in a Hybrid Microgrid," Energies, MDPI, vol. 13(21), pages 1-28, October.
    3. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    4. Killian, M. & Zauner, M. & Kozek, M., 2018. "Comprehensive smart home energy management system using mixed-integer quadratic-programming," Applied Energy, Elsevier, vol. 222(C), pages 662-672.
    5. Hoogvliet, T.W. & Litjens, G.B.M.A. & van Sark, W.G.J.H.M., 2017. "Provision of regulating- and reserve power by electric vehicle owners in the Dutch market," Applied Energy, Elsevier, vol. 190(C), pages 1008-1019.
    6. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    7. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    2. Jack, M.W. & Mirfin, A. & Anderson, B., 2021. "The role of highly energy-efficient dwellings in enabling 100% renewable electricity," Energy Policy, Elsevier, vol. 158(C).
    3. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    4. Wu, Xifeng & Xu, Yuechao & Lou, Yuting & Chen, Yu, 2018. "Low carbon transition in a distributed energy system regulated by localized energy markets," Energy Policy, Elsevier, vol. 122(C), pages 474-485.
    5. Staudt, Philipp & Schmidt, Marc & Gärttner, Johannes & Weinhardt, Christof, 2018. "A decentralized approach towards resolving transmission grid congestion in Germany using vehicle-to-grid technology," Applied Energy, Elsevier, vol. 230(C), pages 1435-1446.
    6. Morstyn, Thomas & Collett, Katherine A. & Vijay, Avinash & Deakin, Matthew & Wheeler, Scot & Bhagavathy, Sivapriya M. & Fele, Filiberto & McCulloch, Malcolm D., 2020. "OPEN: An open-source platform for developing smart local energy system applications," Applied Energy, Elsevier, vol. 275(C).
    7. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    8. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    11. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    12. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    14. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    15. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    16. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Francesco Bandarin & Enrico Ciciotti & Marco Cremaschi & Giovanna Madera & Paolo Perulli & Diana Shendrikova, 2020. "Which Future for Cities after COVID-19 An international Survey," Reports, Fondazione Eni Enrico Mattei, October.
    18. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    19. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    20. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4120-:d:590641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.