IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4082-d589687.html
   My bibliography  Save this article

Taking into Consideration the Inclusion of Wind Generation in Hybrid Microgrids: A Methodology and a Case Study

Author

Listed:
  • Luis Arribas

    (Renewable Energy Division, CIEMAT, 28040 Madrid, Spain)

  • Natalia Bitenc

    (Engineering Department, Higher Technical School of Engineering and Industrial Design, Polytechnic University of Madrid (UPM), 28012 Madrid, Spain)

  • Andreo Benech

    (Autonomous Generation Department, National Administration of Power Plants and Electric Transmissions (UTE), Montevideo 2431, Uruguay)

Abstract

During the last decades, there has been great interest in the research community with respect to PV-Wind systems but figures show that, in practice, only PV-Diesel Power Systems (PVDPS) are being implemented. There are some barriers for the inclusion of wind generation in hybrid microgrids and some of them are economic barriers while others are technical barriers. This paper is focused on some of the identified technical barriers and presents a methodology to facilitate the inclusion of wind generation system in the design process in an affordable manner. An example of the application of this methodology and its results is shown through a case study. The case study is an existing PVDPS where there is an interest to incorporate wind generation in order to cope with a foreseen increase in the demand.

Suggested Citation

  • Luis Arribas & Natalia Bitenc & Andreo Benech, 2021. "Taking into Consideration the Inclusion of Wind Generation in Hybrid Microgrids: A Methodology and a Case Study," Energies, MDPI, vol. 14(14), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4082-:d:589687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Sebastián, 2022. "Modeling, Simulation and Control of Wind Diesel Power Systems," Energies, MDPI, vol. 15(5), pages 1-2, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Hamilton & Michael Negnevitsky & Xiaolin Wang, 2018. "Economics of Renewable Energy Integration and Energy Storage via Low Load Diesel Application," Energies, MDPI, vol. 11(5), pages 1-13, April.
    2. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    3. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    4. Francesc Girbau-Llistuella & Francisco Díaz-González & Andreas Sumper & Ramon Gallart-Fernández & Daniel Heredero-Peris, 2018. "Smart Grid Architecture for Rural Distribution Networks: Application to a Spanish Pilot Network," Energies, MDPI, vol. 11(4), pages 1-35, April.
    5. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    6. Venkata Bandi & Tiia Sahrakorpi & Jukka V. Paatero & Risto Lahdelma, 2023. "Unveiling the Decision-Making Dilemmas in Mini-Grids: The Intricate Case of Smart Meters," Energies, MDPI, vol. 16(17), pages 1-22, August.
    7. Tatiane Silva Costa & Marcelo Gradella Villalva, 2020. "Technical Evaluation of a PV-Diesel Hybrid System with Energy Storage: Case Study in the Tapajós-Arapiuns Extractive Reserve, Amazon, Brazil," Energies, MDPI, vol. 13(11), pages 1-22, June.
    8. Costa, Vinicius B.F. & Capaz, Rafael S. & Bonatto, Benedito D., 2023. "Small steps towards energy poverty mitigation: Life cycle assessment and economic feasibility analysis of a photovoltaic and battery system in a Brazilian indigenous community," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    9. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Fioriti, Davide & Pintus, Salvatore & Lutzemberger, Giovanni & Poli, Davide, 2020. "Economic multi-objective approach to design off-grid microgrids: A support for business decision making," Renewable Energy, Elsevier, vol. 159(C), pages 693-704.
    11. Valeria Gambino & Riccardo Del Citto & Paolo Cherubini & Carlo Tacconelli & Andrea Micangeli & Romano Giglioli, 2019. "Methodology for the Energy Need Assessment to Effectively Design and Deploy Mini-Grids for Rural Electrification," Energies, MDPI, vol. 12(3), pages 1-27, February.
    12. Abada, Ibrahim & Othmani, Mehdi & Tatry, Léa, 2021. "An innovative approach for the optimal sizing of mini-grids in rural areas integrating the demand, the supply, and the grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. A.S.M. Mominul Hasan, 2020. "Electric Rickshaw Charging Stations as Distributed Energy Storages for Integrating Intermittent Renewable Energy Sources: A Case of Bangladesh," Energies, MDPI, vol. 13(22), pages 1-28, November.
    14. Luis Arribas & Yolanda Lechón & Alberto Perula & Javier Domínguez & Manuel Ferres & Jorge Navarro & Luis F. Zarzalejo & Carolina García Barquero & Ignacio Cruz, 2021. "Review of Data and Data Sources for the Assessment of the Potential of Utility-Scale Hybrid Wind–Solar PV Power Plants Deployment, under a Microgrid Scope," Energies, MDPI, vol. 14(21), pages 1-23, November.
    15. Pedro Ciller & Fernando de Cuadra & Sara Lumbreras, 2019. "Optimizing Off-Grid Generation in Large-Scale Electrification-Planning Problems: A Direct-Search Approach," Energies, MDPI, vol. 12(24), pages 1-22, December.
    16. Lai, Chun Sing & Locatelli, Giorgio & Pimm, Andrew & Tao, Yingshan & Li, Xuecong & Lai, Loi Lei, 2019. "A financial model for lithium-ion storage in a photovoltaic and biogas energy system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Jing Huang & John Boland, 2018. "Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales," Energies, MDPI, vol. 11(5), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4082-:d:589687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.