IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics1364032121004056.html
   My bibliography  Save this article

An innovative approach for the optimal sizing of mini-grids in rural areas integrating the demand, the supply, and the grid

Author

Listed:
  • Abada, Ibrahim
  • Othmani, Mehdi
  • Tatry, Léa

Abstract

On the path to universal electricity access, the most significant challenge lies in the electrification of remote rural villages where connection to the national grid is a durable but prohibitively expensive solution. With decreasing costs of renewable technologies, autonomous mini-grids combined with solar home systems constitute today an economically affordable and robust electrification option. In this paper, we elaborate a novel methodology that automatically designs and estimates the cost of the optimal mini-grid to install in a village, that requires only some geographical information with a delimitation of its roofs. In a first step, we use machine-learning algorithms to predict the demand of each building. In a second step, we develop a mathematical optimization approach to best design the mini-grid where generation and storage assets as well as the reticulation of the grid are jointly optimized. Our methodology has many advantages: first, by automating the full process, the calculation time of the electrification cost is drastically reduced by many orders of magnitude and the methodology can easily be deployed to any village/region. Second, our approach can reduce investment costs by more than 20% when compared to existing benchmarks. Finally, it can help agencies to efficiently assess the electrification costs of many regions and support them in the energy access planning.

Suggested Citation

  • Abada, Ibrahim & Othmani, Mehdi & Tatry, Léa, 2021. "An innovative approach for the optimal sizing of mini-grids in rural areas integrating the demand, the supply, and the grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004056
    DOI: 10.1016/j.rser.2021.111117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Hoffmann, Martha M. & Ansari, Dawud, 2019. "Simulating the potential of swarm grids for pre-electrified communities – A case study from Yemen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 289-302.
    3. Deichmann, Uwe & Meisner, Craig & Murray, Siobhan & Wheeler, David, 2011. "The economics of renewable energy expansion in rural Sub-Saharan Africa," Energy Policy, Elsevier, vol. 39(1), pages 215-227, January.
    4. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    5. Casillas, Christian E. & Kammen, Daniel M., 2011. "The delivery of low-cost, low-carbon rural energy services," Energy Policy, Elsevier, vol. 39(8), pages 4520-4528, August.
    6. Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
    7. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    8. Pecenak, Zachary K. & Stadler, Michael & Fahy, Kelsey, 2019. "Efficient multi-year economic energy planning in microgrids," Applied Energy, Elsevier, vol. 255(C).
    9. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    10. Williams, Nathaniel J. & Jaramillo, Paulina & Taneja, Jay & Ustun, Taha Selim, 2015. "Enabling private sector investment in microgrid-based rural electrification in developing countries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1268-1281.
    11. Pierre-Louis Poirion, 2016. "Robust linear programming; optimal sizing of an hybrid energy stand-alone system," 4OR, Springer, vol. 14(1), pages 103-104, March.
    12. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    13. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    14. Filippini, Massimo & Pachauri, Shonali, 2004. "Elasticities of electricity demand in urban Indian households," Energy Policy, Elsevier, vol. 32(3), pages 429-436, February.
    15. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    16. Billionnet, Alain & Costa, Marie-Christine & Poirion, Pierre-Louis, 2016. "Robust optimal sizing of a hybrid energy stand-alone system," European Journal of Operational Research, Elsevier, vol. 254(2), pages 565-575.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gelchu, Milky Ali & Ehnberg, Jimmy & Shiferaw, Dereje & Ahlgren, Erik O., 2023. "Impact of demand-side management on the sizing of autonomous solar PV-based mini-grids," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    2. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    3. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Fioriti, Davide & Pintus, Salvatore & Lutzemberger, Giovanni & Poli, Davide, 2020. "Economic multi-objective approach to design off-grid microgrids: A support for business decision making," Renewable Energy, Elsevier, vol. 159(C), pages 693-704.
    5. Caputo, Cesare & Cardin, Michel-Alexandre & Ge, Pudong & Teng, Fei & Korre, Anna & Antonio del Rio Chanona, Ehecatl, 2023. "Design and planning of flexible mobile Micro-Grids using Deep Reinforcement Learning," Applied Energy, Elsevier, vol. 335(C).
    6. Chambon, Clementine L. & Karia, Tanuj & Sandwell, Philip & Hallett, Jason P., 2020. "Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India," Renewable Energy, Elsevier, vol. 154(C), pages 432-444.
    7. Shakya, Bhupendra & Bruce, Anna & MacGill, Iain, 2019. "Survey based characterisation of energy services for improved design and operation of standalone microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 493-503.
    8. Pedro Ciller & Fernando de Cuadra & Sara Lumbreras, 2019. "Optimizing Off-Grid Generation in Large-Scale Electrification-Planning Problems: A Direct-Search Approach," Energies, MDPI, vol. 12(24), pages 1-22, December.
    9. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    10. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    11. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    12. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).
    13. Pourmohammadi, Pardis & Saif, Ahmed, 2023. "Robust metamodel-based simulation-optimization approaches for designing hybrid renewable energy systems," Applied Energy, Elsevier, vol. 341(C).
    14. Laura Del-Río-Carazo & Emiliano Acquila-Natale & Santiago Iglesias-Pradas & Ángel Hernández-García, 2022. "Sustainable Rural Electrification Project Management: An Analysis of Three Case Studies," Energies, MDPI, vol. 15(3), pages 1-21, February.
    15. Garces, Estefany & Franco, Carlos J. & Tomei, Julia & Dyner, Isaac, 2023. "Sustainable electricity supply for small off-grid communities in Colombia: A system dynamics approach," Energy Policy, Elsevier, vol. 172(C).
    16. Subhes C. Bhattacharyya, 2018. "Mini-Grids for the Base of the Pyramid Market: A Critical Review," Energies, MDPI, vol. 11(4), pages 1-21, April.
    17. Chang, Hsiu-Chuan & Ghaddar, Bissan & Nathwani, Jatin, 2022. "Shared community energy storage allocation and optimization," Applied Energy, Elsevier, vol. 318(C).
    18. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    19. Venkata Bandi & Tiia Sahrakorpi & Jukka V. Paatero & Risto Lahdelma, 2023. "Unveiling the Decision-Making Dilemmas in Mini-Grids: The Intricate Case of Smart Meters," Energies, MDPI, vol. 16(17), pages 1-22, August.
    20. Brunet, Carole & Savadogo, Oumarou & Baptiste, Pierre & Bouchard, Michel A., 2018. "Shedding some light on photovoltaic solar energy in Africa – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 325-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.