IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1080-d143639.html
   My bibliography  Save this article

Economics of Renewable Energy Integration and Energy Storage via Low Load Diesel Application

Author

Listed:
  • James Hamilton

    (Centre for Renewable Energy and Power Systems, School of Engineering, University of Tasmania, Hobart Tasmania 7000, Australia)

  • Michael Negnevitsky

    (Centre for Renewable Energy and Power Systems, School of Engineering, University of Tasmania, Hobart Tasmania 7000, Australia)

  • Xiaolin Wang

    (Centre for Renewable Energy and Power Systems, School of Engineering, University of Tasmania, Hobart Tasmania 7000, Australia)

Abstract

One-quarter of the world’s population lives without access to electricity. Unfortunately, the generation technology most commonly employed to advance rural electrification, diesel generation, carries considerable commercial and ecological risks. One approach used to address both the cost and pollution of diesel generation is renewable energy (RE) integration. However, to successfully integrate RE, both the stochastic nature of the RE resource and the operating characteristics of diesel generation require careful consideration. Typically, diesel generation is configured to run heavily loaded, achieving peak efficiencies within 70–80% of rated capacity. Diesel generation is also commonly sized to peak demand. These characteristics serve to constrain the possible RE penetration. While energy storage can relieve the constraint, this adds cost and complexity to the system. This paper identifies an alternative approach, redefining the low load capability of diesel generation. Low load diesel (LLD) allows a diesel engine to operate across its full capacity in support of improved RE utilization. LLD uses existing diesel assets, resulting in a reduced-cost, low-complexity substitute. This paper presents an economic analysis of LLD, with results compared to conventional energy storage applications. The results identify a novel pathway for consumers to transition from low to medium levels of RE penetration, without additional cost or system complexity.

Suggested Citation

  • James Hamilton & Michael Negnevitsky & Xiaolin Wang, 2018. "Economics of Renewable Energy Integration and Energy Storage via Low Load Diesel Application," Energies, MDPI, vol. 11(5), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1080-:d:143639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    2. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    3. Laura Tribioli & Raffaello Cozzolino & Luca Evangelisti & Gino Bella, 2016. "Energy Management of an Off-Grid Hybrid Power Plant with Multiple Energy Storage Systems," Energies, MDPI, vol. 9(8), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Hamilton & Michael Negnevitsky & Xiaolin Wang & Evgenii Semshchikov, 2020. "The Role of Low-Load Diesel in Improved Renewable Hosting Capacity within Isolated Power Systems," Energies, MDPI, vol. 13(16), pages 1-15, August.
    2. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    3. Bülent Özdalyan & Recep Ç. Orman, 2018. "Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive," Energies, MDPI, vol. 11(6), pages 1-12, June.
    4. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    2. Tatiane Silva Costa & Marcelo Gradella Villalva, 2020. "Technical Evaluation of a PV-Diesel Hybrid System with Energy Storage: Case Study in the Tapajós-Arapiuns Extractive Reserve, Amazon, Brazil," Energies, MDPI, vol. 13(11), pages 1-22, June.
    3. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    4. Mohammad Jafar Hadidian Moghaddam & Akhtar Kalam & Mohammad Reza Miveh & Amirreza Naderipour & Foad H. Gandoman & Ali Asghar Ghadimi & Zulkurnain Abdul-Malek, 2018. "Improved Voltage Unbalance and Harmonics Compensation Control Strategy for an Isolated Microgrid," Energies, MDPI, vol. 11(10), pages 1-26, October.
    5. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    6. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Banjo A. Aderemi & S. P. Daniel Chowdhury & Thomas O. Olwal & Adnan M. Abu-Mahfouz, 2018. "Techno-Economic Feasibility of Hybrid Solar Photovoltaic and Battery Energy Storage Power System for a Mobile Cellular Base Station in Soshanguve, South Africa," Energies, MDPI, vol. 11(6), pages 1-26, June.
    8. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    9. Ke Jiang & Feng Wu & Xuanjun Zong & Linjun Shi & Keman Lin, 2019. "Distributed Dynamic Economic Dispatch of an Isolated AC/DC Hybrid Microgrid Based on a Finite-Step Consensus Algorithm," Energies, MDPI, vol. 12(24), pages 1-18, December.
    10. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    11. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    12. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    13. Mimica, Marko & Krajačić, Goran, 2021. "The Smart Islands method for defining energy planning scenarios on islands," Energy, Elsevier, vol. 237(C).
    14. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    15. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Francesc Girbau-Llistuella & Francisco Díaz-González & Andreas Sumper & Ramon Gallart-Fernández & Daniel Heredero-Peris, 2018. "Smart Grid Architecture for Rural Distribution Networks: Application to a Spanish Pilot Network," Energies, MDPI, vol. 11(4), pages 1-35, April.
    17. Carlos Pereyra-Mariñez & José Andrickson-Mora & Victor Samuel Ocaña-Guevera & Félix Santos García & Alexander Vallejo Diaz, 2023. "Energy Supply Systems Predicting Model for the Integration of Long-Term Energy Planning Variables with Sustainable Livelihoods Approach in Remote Communities," Energies, MDPI, vol. 16(7), pages 1-17, March.
    18. Gerald A. Abantao & Jessa Alesna Ibañez & Paul Eugene Delfin Bundoc & Lean Lorenzo F. Blas & Xaviery N. Penisa & Eugene A. Esparcia & Michael T. Castro & Karl Ezra Pilario & Adonis Emmanuel D. Tio & I, 2024. "Utility-Scale Grid-Connected Microgrid Planning Framework for Sustainable Renewable Energy Integration," Energies, MDPI, vol. 17(20), pages 1-32, October.
    19. Venkata Bandi & Tiia Sahrakorpi & Jukka V. Paatero & Risto Lahdelma, 2023. "Unveiling the Decision-Making Dilemmas in Mini-Grids: The Intricate Case of Smart Meters," Energies, MDPI, vol. 16(17), pages 1-22, August.
    20. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1080-:d:143639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.