Modelling and Experimental Validation of a Hybrid Electric Propulsion System for Light Aircraft and Unmanned Aerial Vehicles
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sliwinski, Jacob & Gardi, Alessandro & Marino, Matthew & Sabatini, Roberto, 2017. "Hybrid-electric propulsion integration in unmanned aircraft," Energy, Elsevier, vol. 140(P2), pages 1407-1416.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
- Paolo Iodice & Enrico Fornaro & Massimo Cardone, 2022. "Hybrid Propulsion in SI Engines for New Generation Motorcycles: A Numerical-Experimental Approach to Assess Power Requirements and Emission Performance," Energies, MDPI, vol. 15(17), pages 1-13, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
- Koruyucu, Elif, 2019. "Energy and exergy analysis at different hybridization factors for hybrid electric propulsion light utility helicopter engine," Energy, Elsevier, vol. 189(C).
- Bravo, Guillem Moreno & Praliyev, Nurgeldy & Veress, Árpád, 2021. "Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft," Energy, Elsevier, vol. 214(C).
- Tao Lei & Zhihao Min & Qinxiang Gao & Lina Song & Xingyu Zhang & Xiaobin Zhang, 2022. "The Architecture Optimization and Energy Management Technology of Aircraft Power Systems: A Review and Future Trends," Energies, MDPI, vol. 15(11), pages 1-37, June.
- Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
- Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
- Zhang, Jinning & Roumeliotis, Ioannis & Zhang, Xin & Zolotas, Argyrios, 2023. "Techno-economic-environmental evaluation of aircraft propulsion electrification: Surrogate-based multi-mission optimal design approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Ranasinghe, Kavindu & Guan, Kai & Gardi, Alessandro & Sabatini, Roberto, 2019. "Review of advanced low-emission technologies for sustainable aviation," Energy, Elsevier, vol. 188(C).
- Burston, Martin & Ranasinghe, Kavindu & Gardi, Alessandro & Parezanović, Vladimir & Ajaj, Rafic & Sabatini, Roberto, 2022. "Design principles and digital control of advanced distributed propulsion systems," Energy, Elsevier, vol. 241(C).
- Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Liu, He & Zhang, Silong & Dong, Peng, 2019. "Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell," Energy, Elsevier, vol. 168(C), pages 702-711.
- Zaid O. Alrayes & Mohamed Gadalla, 2021. "Development of a Flexible Framework Multi-Design Optimization Scheme for a Hand Launched Fuel Cell-Powered UAV," Energies, MDPI, vol. 14(10), pages 1-27, May.
- Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
- Duan, Buren & Zhang, Haonan & Hua, Zuohao & Wu, Lizhi & Bao, Zijing & Guo, Ning & Ye, Yinghua & Shen, Ruiqi, 2022. "Burning characteristics and combustion wave model of AP/AN-based laser-controlled solid propellant," Energy, Elsevier, vol. 253(C).
More about this item
Keywords
hybrid electric propulsion system; parallel configuration; unmanned aerial vehicle; experimental validation; MATLAB Simulink simulation; aircraft; freewheel coupling; specific load speed; Li-ion battery; PMSM; flux weakening;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3969-:d:587186. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.