IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3849-d582652.html
   My bibliography  Save this article

Anaerobic Degradation of Environmentally Hazardous Aquatic Plant Pistia stratiotes and Soluble Cu(II) Detoxification by Methanogenic Granular Microbial Preparation

Author

Listed:
  • Olesia Havryliuk

    (Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine)

  • Vira Hovorukha

    (Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine)

  • Oleksandr Savitsky

    (Department of Ichthyology and Hydrobiology of River Systems, Institute of Hydrobiology, National Academy of Sciences of Ukraine, 12 Prosp. Geroiv Stalingradu, 04210 Kyiv, Ukraine)

  • Volodymyr Trilis

    (Department of Ichthyology and Hydrobiology of River Systems, Institute of Hydrobiology, National Academy of Sciences of Ukraine, 12 Prosp. Geroiv Stalingradu, 04210 Kyiv, Ukraine)

  • Antonina Kalinichenko

    (Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland)

  • Agnieszka Dołhańczuk-Śródka

    (Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland)

  • Daniel Janecki

    (Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland)

  • Oleksandr Tashyrev

    (Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine)

Abstract

The aquatic plant Pistia stratiotes L. is environmentally hazardous and requires effective methods for its utilization. The harmfulness of these plants is determined by their excessive growth in water bodies and degradation of local aquatic ecosystems. Mechanical removal of these plants is widespread but requires fairly resource-intensive technology. However, these aquatic plants are polymer-containing substrates and have a great potential for conversion into bioenergy. The aim of the work was to determine the main patterns of Pistia stratiotes L. degradation via granular microbial preparation (GMP) to obtain biomethane gas while simultaneously detoxifying toxic copper compounds. The composition of the gas phase was determined via gas chromatography. The pH and redox potential parameters were determined potentiometrically, and Cu(II) concentration photocolorimetrically. Applying the preparation, high efficiency of biomethane fermentation of aquatic plants and Cu(II) detoxification were achieved. Biomethane yield reached 68.0 ± 11.1 L/kg VS of Pistia stratiotes L. biomass. The plants’ weight was decreased by 9 times. The Cu(II) was completely removed after 3 and 10 days of fermentation from initial concentrations of 100 ppm and 200 ppm, respectively. The result confirms the possibility of using the GMP to obtain biomethane from environmentally hazardous substrates and detoxify copper-contaminated fluids.

Suggested Citation

  • Olesia Havryliuk & Vira Hovorukha & Oleksandr Savitsky & Volodymyr Trilis & Antonina Kalinichenko & Agnieszka Dołhańczuk-Śródka & Daniel Janecki & Oleksandr Tashyrev, 2021. "Anaerobic Degradation of Environmentally Hazardous Aquatic Plant Pistia stratiotes and Soluble Cu(II) Detoxification by Methanogenic Granular Microbial Preparation," Energies, MDPI, vol. 14(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3849-:d:582652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vira Hovorukha & Olesia Havryliuk & Galina Gladka & Oleksandr Tashyrev & Antonina Kalinichenko & Monika Sporek & Agnieszka Dołhańczuk-Śródka, 2021. "Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste," Energies, MDPI, vol. 14(7), pages 1-12, March.
    2. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    3. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Can environmental regulation solve pollution problems? Theoretical model and empirical research based on the skill premium," Energy Economics, Elsevier, vol. 94(C).
    4. Ryan P. Powers & Walter Jetz, 2019. "Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios," Nature Climate Change, Nature, vol. 9(4), pages 323-329, April.
    5. Johannes Wessely & Karl Hülber & Andreas Gattringer & Michael Kuttner & Dietmar Moser & Wolfgang Rabitsch & Stefan Schindler & Stefan Dullinger & Franz Essl, 2017. "Habitat-based conservation strategies cannot compensate for climate-change-induced range loss," Nature Climate Change, Nature, vol. 7(11), pages 823-827, November.
    6. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Di Giacomo, 2021. "Material and Energy Recovery from the Final Disposal of Organic Waste," Energies, MDPI, vol. 14(24), pages 1-2, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bin & Lin, Boqiang, 2023. "Assessing the green energy development in China and its carbon reduction effect: Using a quantile approach," Energy Economics, Elsevier, vol. 126(C).
    2. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    4. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    8. Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    9. Waffenschmidt, Brigitte, 2021. "Nachhaltigkeit: Modewort oder Erwartung der Generation Y an ihre Arbeitgeber," EconStor Research Reports 246810, ZBW - Leibniz Information Centre for Economics.
    10. Conor Waldock & Bernhard Wegscheider & Dario Josi & Bárbara Borges Calegari & Jakob Brodersen & Luiz Jardim de Queiroz & Ole Seehausen, 2024. "Deconstructing the geography of human impacts on species’ natural distribution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    12. James P. Herrera & Jean Yves Rabezara & Ny Anjara Fifi Ravelomanantsoa & Miranda Metz & Courtni France & Ajilé Owens & Michelle Pender & Charles L. Nunn & Randall A. Kramer, 2021. "Food insecurity related to agricultural practices and household characteristics in rural communities of northeast Madagascar," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1393-1405, December.
    13. Alvydas Zagorskis & Regimantas Dauknys & Mantas Pranskevičius & Olha Khliestova, 2023. "Research on Biogas Yield from Macroalgae with Inoculants at Different Organic Loading Rates in a Three-Stage Bioreactor," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    14. Zhuoxi Yu & Yu Wu & Zhichuan Zhu, 2023. "Fiscal Decentralization, Environmental Regulation and High-Quality Economic Development," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    15. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    16. Kapica, Jacek & Jurasz, Jakub & Canales, Fausto A. & Bloomfield, Hannah & Guezgouz, Mohammed & De Felice, Matteo & Zbigniew, Kobus, 2024. "The potential impact of climate change on European renewable energy droughts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. Guangdong Li & Chuanglin Fang & James E. M. Watson & Siao Sun & Wei Qi & Zhenbo Wang & Jianguo Liu, 2024. "Mixed effectiveness of global protected areas in resisting habitat loss," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    19. Hailemariam, Abebe & Ivanovski, Kris & Dzhumashev, Ratbek, 2022. "Does R&D investment in renewable energy technologies reduce greenhouse gas emissions?," Applied Energy, Elsevier, vol. 327(C).
    20. Sinha, Avik & Tiwari, Sunil & Saha, Tanaya, 2024. "Modeling the behavior of renewable energy market: Understanding the moderation of climate risk factors," Energy Economics, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3849-:d:582652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.