A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hossain, Shahzad & Abdalla, Abdalla M. & Jamain, Siti Noorazean Binti & Zaini, Juliana Hj & Azad, Abul K., 2017. "A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 750-764.
- Afif, Ahmed & Radenahmad, Nikdalila & Cheok, Quentin & Shams, Shahriar & Kim, Jung H. & Azad, Abul K., 2016. "Ammonia-fed fuel cells: a comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 822-835.
- Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
- Dieter Lüthi & Martine Le Floch & Bernhard Bereiter & Thomas Blunier & Jean-Marc Barnola & Urs Siegenthaler & Dominique Raynaud & Jean Jouzel & Hubertus Fischer & Kenji Kawamura & Thomas F. Stocker, 2008. "High-resolution carbon dioxide concentration record 650,000–800,000 years before present," Nature, Nature, vol. 453(7193), pages 379-382, May.
- Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
- Hossein Ali Yousefi Rizi & Donghoon Shin, 2022. "Green Hydrogen Production Technologies from Ammonia Cracking," Energies, MDPI, vol. 15(21), pages 1-49, November.
- T. M. Indra Mahlia & I. M. Rizwanul Fattah, 2021. "Energy for Sustainable Future," Energies, MDPI, vol. 14(23), pages 1-2, November.
- Fei Ma & Lingyan Guo & Zhijie Li & Xiaoxiao Zeng & Zhencao Zheng & Wei Li & Feiyang Zhao & Wenbin Yu, 2023. "A Review of Current Advances in Ammonia Combustion from the Fundamentals to Applications in Internal Combustion Engines," Energies, MDPI, vol. 16(17), pages 1-20, August.
- Vadim V. Ponkratov & Alexey S. Kuznetsov & Iskandar Muda & Miftahul Jannah Nasution & Mohammed Al-Bahrani & Hikmet Ş. Aybar, 2022. "Investigating the Index of Sustainable Development and Reduction in Greenhouse Gases of Renewable Energies," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
- Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
- J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
- Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
- Abdulelah Aljaafari & I. M. R. Fattah & M. I. Jahirul & Yuantong Gu & T. M. I. Mahlia & Md. Ariful Islam & Mohammad S. Islam, 2022. "Biodiesel Emissions: A State-of-the-Art Review on Health and Environmental Impacts," Energies, MDPI, vol. 15(18), pages 1-24, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
- Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
- Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
- Blazsek, Szabolcs & Escribano, Alvaro, 2023.
"Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts,"
Energy Economics, Elsevier, vol. 118(C).
- Blazsek, Szabolcs, 2022. "Score-driven threshold ice-age models: benchmark models for long-run climate forecasts," UC3M Working papers. Economics 34757, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
- Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
- Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Haoran Wang & Toshiyuki Fujita, 2023. "A Review of Research on Embodied Carbon in International Trade," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
- Frisch, L.C. & Mathis, J.T. & Kettle, N.P. & Trainor, S.F., 2015. "Gauging perceptions of ocean acidification in Alaska," Marine Policy, Elsevier, vol. 53(C), pages 101-110.
- Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo, 2018.
"The long-run decoupling of emissions and output: Evidence from the largest emitters,"
Energy Policy, Elsevier, vol. 118(C), pages 58-68.
- Gail Cohen & João Tovar Jalles & Mr. Prakash Loungani & Ricardo Marto, 2018. "The Long-Run Decoupling of Emissions and Output: Evidence from the Largest Emitters," IMF Working Papers 2018/056, International Monetary Fund.
- Martin L. Weitzman, 2011.
"Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain Discounting,"
NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 23-46,
National Bureau of Economic Research, Inc.
- Weitzman, Martin L., 2009. "Additive damages, fat-tailed climate dynamics, and uncertain discounting," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-29.
- Weitzman, Martin L., 2009. "Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain Discounting," Economics Discussion Papers 2009-26, Kiel Institute for the World Economy (IfW Kiel).
- Weitzman, Martin L., 2009. "Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain Discounting," Scholarly Articles 9639963, Harvard University Department of Economics.
- Hongli Zhang & Lei Shen & Shuai Zhong & Ayman Elshkaki, 2020. "Economic Structure Transformation and Low-Carbon Development in Energy-Rich Cities: The Case of the Contiguous Area of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous Region of China," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
- Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
- Pham Ngoc-Tham & Pham Trung-Kien & Cao Viet Hieu & Tran Ha Giang & Vo Xuan Vinh, 2020.
"The Impact of International Trade on Environmental Quality: Implications for Law,"
Asian Journal of Law and Economics, De Gruyter, vol. 11(1), pages 1-12, April.
- Pham Ngoc-Tham & Pham Trung-Kien & Cao Viet Hieu & Tran Ha Giang & Vo Xuan Vinh, 2020. "The Impact of International Trade on Environmental Quality: Implications for Law," Asian Journal of Law and Economics, De Gruyter, vol. 11(1), pages 1-12, April.
- Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Michael E. Weber & Ian Bailey & Sidney R. Hemming & Yasmina M. Martos & Brendan T. Reilly & Thomas A. Ronge & Stefanie Brachfeld & Trevor Williams & Maureen Raymo & Simon T. Belt & Lukas Smik & Hendri, 2022. "Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
- Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell," Applied Energy, Elsevier, vol. 357(C).
More about this item
Keywords
ammonia; renewable energy storage; hydrogen storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3732-:d:579693. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.