IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3505-d574013.html
   My bibliography  Save this article

Heat Release Kinetics upon Water Vapor Sorption Using Cation-Exchanged Zeolites and Prussian Blue Analogues as Adsorbents: Application to Short-Term Low-Temperature Thermochemical Storage of Energy

Author

Listed:
  • Salma Benzaria

    (Institut Charles Gerhardt (ICGM), Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France)

  • Ekaterina Mamontova

    (Institut Charles Gerhardt (ICGM), Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France)

  • Yannick Guari

    (Institut Charles Gerhardt (ICGM), Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France)

  • Joulia Larionova

    (Institut Charles Gerhardt (ICGM), Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France)

  • Jérôme Long

    (Institut Charles Gerhardt (ICGM), Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France)

  • Philippe Trens

    (Institut Charles Gerhardt (ICGM), Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France)

  • Fabrice Salles

    (Institut Charles Gerhardt (ICGM), Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France)

  • Jerzy Zajac

    (Institut Charles Gerhardt (ICGM), Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France)

Abstract

In view of potential uses in short-term thermochemical heat storage by sorption of water vapor, the capacity to release a sufficient heat amount at the appropriate rate of a Prussian blue analogue (PBA) containing hexacyanocobaltate vacancies has been compared with those of 13X type zeolites possessing Na + , Ce 3+ , Ce 4+ , or Tb 3+ extra-framework compensating cations. The extended structural and surface characterization demonstrated good reproducibility of the preparation procedures performed on a 10-g scale. The adsorbents were tested under dynamic conditions of gas flow with the aid of either a gas flow calorimeter (120 mL h −1 helium flow) to measure the amount and rate of the integral heat release or a laboratory-scale test rig (15,000 to 22,800 mL h −1 nitrogen flow) to monitor the outlet temperature of nitrogen heated by adsorption. For a regeneration temperature of 353 K and a partial H 2 O pressure of 2.8 kPa in helium, the PBA sample yielded an integral heat ranging between 900 and 1020 kJ kg −1 with a very slow heat release lasting for even 12–14 h. The zeolite-based materials generated between 350 and 950 kJ kg −1 more rapidly (up to 6–7 h), depending on the nature and the content of compensating cations, as well as on the dehydration state achieved during regeneration. With the laboratory-scale test rig, the efficiency of heat extraction by convection was about 65% for Na-13X and only 38% for PBA, and it diminished with decreasing flow rate.

Suggested Citation

  • Salma Benzaria & Ekaterina Mamontova & Yannick Guari & Joulia Larionova & Jérôme Long & Philippe Trens & Fabrice Salles & Jerzy Zajac, 2021. "Heat Release Kinetics upon Water Vapor Sorption Using Cation-Exchanged Zeolites and Prussian Blue Analogues as Adsorbents: Application to Short-Term Low-Temperature Thermochemical Storage of Energy," Energies, MDPI, vol. 14(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3505-:d:574013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    2. Bennici, Simona & Polimann, Téo & Ondarts, Michel & Gonze, Evelyne & Vaulot, Cyril & Le Pierrès, Nolwenn, 2020. "Long-term impact of air pollutants on thermochemical heat storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Sanda Budea, 2014. "Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions," Energies, MDPI, vol. 7(6), pages 1-12, June.
    4. Lefebvre, Dominique & Tezel, F. Handan, 2017. "A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 116-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    2. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    3. Sergio L. González-González & Ana Tejero-González & Francisco J. Rey-Martínez & Manuel Andrés-Chicote, 2017. "Alternative for Summer Use of Solar Air Heaters in Existing Buildings," Energies, MDPI, vol. 10(7), pages 1-15, July.
    4. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    5. Wang, Haomin & Liu, Xin & Liu, Xiao & Sun, Chenggong & Wu, Yupeng, 2023. "Fluidisable mesoporous silica composites for thermochemical energy storage," Energy, Elsevier, vol. 275(C).
    6. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    7. Emanuela Mastronardo & Emanuele La Mazza & Davide Palamara & Elpida Piperopoulos & Daniela Iannazzo & Edoardo Proverbio & Candida Milone, 2022. "Organic Salt Hydrate as a Novel Paradigm for Thermal Energy Storage," Energies, MDPI, vol. 15(12), pages 1-13, June.
    8. Girnik, I.S. & Grekova, A.D. & Li, T.X. & Wang, R.Z. & Dutta, P. & Srinivasa Murthy, S. & Aristov, Yu.I., 2020. "Composite “LiCl/MWCNT/PVA” for adsorption thermal battery: Dynamics of methanol sorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    9. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
    11. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    12. Ahmed Rezk & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Hasan Demir & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Experimental Study on Utilizing Silica Gel with Ethanol and Water for Adsorption Heat Storage," Energies, MDPI, vol. 16(1), pages 1-15, December.
    13. Yihan Wang & Zicheng Zhang & Shuli Liu & Zhihao Wang & Yongliang Shen, 2023. "Development and Characteristics Analysis of Novel Hydrated Salt Composite Adsorbents for Thermochemical Energy Storage," Energies, MDPI, vol. 16(18), pages 1-21, September.
    14. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    15. Argentiero, Amedeo & Bollino, Carlo Andrea & Micheli, Silvia & Zopounidis, Constantin, 2018. "Renewable energy sources policies in a Bayesian DSGE model," Renewable Energy, Elsevier, vol. 120(C), pages 60-68.
    16. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
    17. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    18. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    19. Chung, D.D.L., 2018. "Development, design and applications of structural capacitors," Applied Energy, Elsevier, vol. 231(C), pages 89-101.
    20. Wu, Yang & Chen, Changzhong & Jia, Yifan & Wu, Jie & Huang, Yong & Wang, Linge, 2018. "Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage," Applied Energy, Elsevier, vol. 210(C), pages 167-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3505-:d:574013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.