IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3495-d573908.html
   My bibliography  Save this article

Fast Frequency Support from Hybrid Wind Power Plants Using Supercapacitors

Author

Listed:
  • Qian Long

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
    These authors contributed equally to this work.)

  • Aivaras Celna

    (Ørsted A/S, 2820 Gentofte, Denmark
    These authors contributed equally to this work.)

  • Kaushik Das

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Poul Sørensen

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

Abstract

The concept of hybrid wind power plants (HWPPs) that consist of wind, solar and batteries has received a lot of attention, since HWPPs provide a number of advantages thanks to the complementary nature of wind and solar energy and the flexibility of batteries. Nevertheless, converter-based technologies, as interfaces of HWPPs to the utility grid, contribute to the reduction of total system inertia, making the system more volatile and creating additional threats to frequency stability. To address these operational challenges, the capability of supercapacitors (SCs) to provide fast frequency reserve (FFR) is explored in this paper to enhance the frequency response of the HWPP. Two topologies for integrating SCs into the HWPP are proposed: (1) connecting SC to the DC link of wind turbine (WT) via a DC-DC converter interface, (2) directly connecting SC to the DC link of WT without converter interface. Frequency controllers at the asset level are proposed for these two topologies accordingly. The idea of the proposed frequency controller is to provide frequency response by varying SC voltage in proportion to frequency deviation, namely droop-based FFR. A practical SC sizing method for FFR provision is also discussed. The simulation results have shown, that in the case of frequency event, the proposed frequency controllers for SCs in both topologies positively contribute to the frequency of the system by reducing the rate of change of frequency by at least 5% and improving frequency nadir by at least 10%, compared to the case where the SC has no contribution to FFR. However, the capacitor size requirement for directly connected SC is more demanding in order to achieve the same level of improvement. The performance of frequency support has been highly related to total system inertia and control parameters. Therefore, any change to the severity of frequency events or control parameters calls for the reevaluation of the capacitance.

Suggested Citation

  • Qian Long & Aivaras Celna & Kaushik Das & Poul Sørensen, 2021. "Fast Frequency Support from Hybrid Wind Power Plants Using Supercapacitors," Energies, MDPI, vol. 14(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3495-:d:573908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Anca D. & Sørensen, Poul & Iov, Florin & Blaabjerg, Frede, 2006. "Centralised power control of wind farm with doubly fed induction generators," Renewable Energy, Elsevier, vol. 31(7), pages 935-951.
    2. Müfit Altin & Jan Christian Kuhlmann & Kaushik Das & Anca Daniela Hansen, 2018. "Optimization of Synthetic Inertial Response from Wind Power Plants," Energies, MDPI, vol. 11(5), pages 1-15, April.
    3. Hansen, Anca D. & Altin, Müfit & Margaris, Ioannis D. & Iov, Florin & Tarnowski, Germán C., 2014. "Analysis of the short-term overproduction capability of variable speed wind turbines," Renewable Energy, Elsevier, vol. 68(C), pages 326-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    2. Senjyu, Tomonobu & Kaneko, Toshiaki & Uehara, Akie & Yona, Atsushi & Sekine, Hideomi & Kim, Chul-Hwan, 2009. "Output power control for large wind power penetration in small power system," Renewable Energy, Elsevier, vol. 34(11), pages 2334-2343.
    3. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    4. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    5. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Shi, Jie & Wang, Luhao & Lee, Wei-Jen & Cheng, Xingong & Zong, Xiju, 2019. "Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction," Applied Energy, Elsevier, vol. 256(C).
    7. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    8. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    9. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    10. Hugo Algarvio & Fernando Lopes & António Couto & Ana Estanqueiro & João Santana, 2019. "Variable Renewable Energy and Market Design: New Products and a Real-World Study," Energies, MDPI, vol. 12(23), pages 1-17, November.
    11. Ioannis D. Margaris & Anca D. Hansen & Poul Sørensen & Nikolaos D. Hatziargyriou, 2010. "Illustration of Modern Wind Turbine Ancillary Services," Energies, MDPI, vol. 3(6), pages 1-13, June.
    12. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    13. Hantao Cui & Yichen Zhang & Kevin L. Tomsovic & Fangxing (Fran) Li, 2022. "Power electronics‐interfaced cyber‐physical power systems: A review on modeling, simulation, and cybersecurity," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    14. Willis, D.J. & Niezrecki, C. & Kuchma, D. & Hines, E. & Arwade, S.R. & Barthelmie, R.J. & DiPaola, M. & Drane, P.J. & Hansen, C.J. & Inalpolat, M. & Mack, J.H. & Myers, A.T. & Rotea, M., 2018. "Wind energy research: State-of-the-art and future research directions," Renewable Energy, Elsevier, vol. 125(C), pages 133-154.
    15. Hyungyu Kim & Kwansu Kim & Insu Paek, 2019. "A Study on the Effect of Closed-Loop Wind Farm Control on Power and Tower Load in Derating the TSO Command Condition," Energies, MDPI, vol. 12(10), pages 1-19, May.
    16. Kaushik Das & Müfit Altin & Anca D. Hansen & Poul E. Sørensen, 2019. "Inertia Dependent Droop Based Frequency Containment Process," Energies, MDPI, vol. 12(9), pages 1-20, April.
    17. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    18. Siniscalchi-Minna, Sara & Bianchi, Fernando D. & De-Prada-Gil, Mikel & Ocampo-Martinez, Carlos, 2019. "A wind farm control strategy for power reserve maximization," Renewable Energy, Elsevier, vol. 131(C), pages 37-44.
    19. Mohd Ashraf Ahmad & Shun-ichi Azuma & Toshiharu Sugie, 2014. "A Model-Free Approach for Maximizing Power Production of Wind Farm Using Multi-Resolution Simultaneous Perturbation Stochastic Approximation," Energies, MDPI, vol. 7(9), pages 1-23, August.
    20. Li, Qing'an & Wang, Ye & Kamada, Yasunari & Maeda, Takao & Xu, Jianzhong & Zhou, Shuni & Zhang, Fanghong & Cai, Chang, 2022. "Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3495-:d:573908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.