IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1648-d227240.html
   My bibliography  Save this article

Inertia Dependent Droop Based Frequency Containment Process

Author

Listed:
  • Kaushik Das

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Müfit Altin

    (Energy Systems Engineering Department, Izmir Institute of Technology, Urla, Izmir 35430, Turkey)

  • Anca D. Hansen

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Poul E. Sørensen

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

Abstract

Presently, there is a large need for a better understanding and extensive quantification of grid stability for different grid conditions and controller settings. This article therefore proposes and develops a novel mathematical model to study and perform sensitivity studies for the capabilities of different technologies to provide Frequency Containment Process (FCP) in different grid conditions. A detailed mathematical analytical approach for designing inertia-dependent droop-based FCP is developed and presented in this article. Impacts of different droop settings for generation technologies operating with different inertia of power system can be analyzed through this mathematical approach resulting in proper design of droop settings. In contrast to the simulation-based model, the proposed novel mathematical model allows mathematical quantification of frequency characteristics such as nadir, settling time, ROCOF, time to reach the nadir with respect to controller parameters such as gain, droop, or system parameters such as inertia, volume, of imbalance. Comparative studies between cases of frequency containment reserves (FCR) provision from conventional generators and wind turbines (WTs) are performed. Observations from these simulations are analyzed and explained with the help of an analytical approach which provides the feasible range of droop settings for different values of system inertia. The proposed mathematical approach is validated on simulated Continental Europe (CE) network. The results show that the proposed methodology can be used to design the droop for different technology providing FCP in a power system operating within a certain range of inertia.

Suggested Citation

  • Kaushik Das & Müfit Altin & Anca D. Hansen & Poul E. Sørensen, 2019. "Inertia Dependent Droop Based Frequency Containment Process," Energies, MDPI, vol. 12(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1648-:d:227240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Müfit Altin & Jan Christian Kuhlmann & Kaushik Das & Anca Daniela Hansen, 2018. "Optimization of Synthetic Inertial Response from Wind Power Plants," Energies, MDPI, vol. 11(5), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariano G. Ippolito & Rossano Musca & Gaetano Zizzo, 2021. "Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System," Energies, MDPI, vol. 14(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo Algarvio & Fernando Lopes & António Couto & Ana Estanqueiro & João Santana, 2019. "Variable Renewable Energy and Market Design: New Products and a Real-World Study," Energies, MDPI, vol. 12(23), pages 1-17, November.
    2. Qian Long & Aivaras Celna & Kaushik Das & Poul Sørensen, 2021. "Fast Frequency Support from Hybrid Wind Power Plants Using Supercapacitors," Energies, MDPI, vol. 14(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1648-:d:227240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.