IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3473-d573416.html
   My bibliography  Save this article

Energy Idle Aware Stochastic Lexicographic Local Searches for Precedence-Constraint Task List Scheduling on Heterogeneous Systems

Author

Listed:
  • Alejandro Santiago

    (Information Technology Engineering, Polytechnic University of Altamira, Altamira 89602, Mexico)

  • Mirna Ponce-Flores

    (División de Estudios de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Ciudad Madero 89440, Mexico)

  • J. David Terán-Villanueva

    (Facultad de Ingeniería Arturo Narro Siller, Universidad Autónoma de Tamaulipas, Tampico 89140, México)

  • Fausto Balderas

    (División de Estudios de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Ciudad Madero 89440, Mexico)

  • Salvador Ibarra Martínez

    (Facultad de Ingeniería Arturo Narro Siller, Universidad Autónoma de Tamaulipas, Tampico 89140, México)

  • José Antonio Castan Rocha

    (Facultad de Ingeniería Arturo Narro Siller, Universidad Autónoma de Tamaulipas, Tampico 89140, México)

  • Julio Laria Menchaca

    (Facultad de Ingeniería Arturo Narro Siller, Universidad Autónoma de Tamaulipas, Tampico 89140, México)

  • Mayra Guadalupe Treviño Berrones

    (Facultad de Ingeniería Arturo Narro Siller, Universidad Autónoma de Tamaulipas, Tampico 89140, México)

Abstract

The use of parallel applications in High-Performance Computing (HPC) demands high computing times and energy resources. Inadequate scheduling produces longer computing times which, in turn, increases energy consumption and monetary cost. Task scheduling is an NP-Hard problem; thus, several heuristics methods appear in the literature. The main approaches can be grouped into the following categories: fast heuristics, metaheuristics, and local search. Fast heuristics and metaheuristics are used when pre-scheduling times are short and long, respectively. The third is commonly used when pre-scheduling time is limited by CPU seconds or by objective function evaluations. This paper focuses on optimizing the scheduling of parallel applications, considering the energy consumption during the idle time while no tasks are executing. Additionally, we detail a comparative literature study of the performance of lexicographic variants with local searches adapted to be stochastic and aware of idle energy consumption.

Suggested Citation

  • Alejandro Santiago & Mirna Ponce-Flores & J. David Terán-Villanueva & Fausto Balderas & Salvador Ibarra Martínez & José Antonio Castan Rocha & Julio Laria Menchaca & Mayra Guadalupe Treviño Berrones, 2021. "Energy Idle Aware Stochastic Lexicographic Local Searches for Precedence-Constraint Task List Scheduling on Heterogeneous Systems," Energies, MDPI, vol. 14(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3473-:d:573416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fanjul-Peyro, Luis & Ruiz, Rubén, 2010. "Iterated greedy local search methods for unrelated parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 207(1), pages 55-69, November.
    2. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Ornelas & Alejandro Santiago & Salvador Ibarra Martínez & Mirna Patricia Ponce-Flores & Jesús David Terán-Villanueva & Fausto Balderas & José Antonio Castán Rocha & Alejandro H. García & Juli, 2022. "The Internet Shopping Optimization Problem with Multiple Item Units (ISHOP-U): Formulation, Instances, NP-Completeness, and Evolutionary Optimization," Mathematics, MDPI, vol. 10(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    2. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    3. Zoltán Varga & Pál Simon, 2014. "Examination Of Scheduling Methods For Production Systems," Advanced Logistic systems, University of Miskolc, Department of Material Handling and Logistics, vol. 8(1), pages 111-120, December.
    4. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    5. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    6. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    7. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
    8. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    9. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    10. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    11. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.
    12. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    13. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    14. Fathali, J. & Kakhki, H. Taghizadeh, 2006. "Solving the p-median problem with pos/neg weights by variable neighborhood search and some results for special cases," European Journal of Operational Research, Elsevier, vol. 170(2), pages 440-462, April.
    15. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    16. Martín Barragán, Belén, 2016. "A Partial parametric path algorithm for multiclass classification," DES - Working Papers. Statistics and Econometrics. WS 22390, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    18. Tino Henke & M. Grazia Speranza & Gerhard Wäscher, 2014. "The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 140006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    19. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Olcay Polat & Can B. Kalayci & Özcan Mutlu & Surendra M. Gupta, 2016. "A two-phase variable neighbourhood search algorithm for assembly line worker assignment and balancing problem type-II: an industrial case study," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 722-741, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3473-:d:573416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.