IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3327-d569632.html
   My bibliography  Save this article

Two-Phase Heuristic Algorithm for Integrated Airline Fleet Assignment and Routing Problem

Author

Listed:
  • Vildan Özkır

    (Department of Industrial Engineering, Yıldız Technical University, Yıldız, 34349 İstanbul, Turkey)

  • Mahmud Sami Özgür

    (Department of Industrial Engineering, Yıldız Technical University, Yıldız, 34349 İstanbul, Turkey)

Abstract

High profitability and high costs have stiffened competition in the airline industry. The main purpose of the study is to propose a computationally efficient algorithm for integrated fleet assignments and aircraft routing problems for a real-case hub and spoke airline planning problem. The economic concerns of airline operations have led to the need for minimising costs and increasing the ability to meet rising demands. Since fleets are the most limited and valuable assets of airline carriers, the allocation of aircraft to scheduled flights directly affects profitability/market share. The airline fleet assignment problem (AFAP) addresses the assignment of aircraft, each with a different capacity, capability, availability, and requirement, to a given flight schedule. This study proposes a mathematical model and heuristic method for solving a real-life airline fleet assignment and aircraft routing problem. We generate a set of problem instances based on real data and conduct a computational experiment to assess the performance of the proposed algorithm. The numerical study and experimental results indicate that the heuristic algorithm provides optimal solutions for the integrated fleet assignment and aircraft routing problem. Furthermore, a computational study reveals that compared with the heuristic method, solving the mathematical model takes significantly longer to execute.

Suggested Citation

  • Vildan Özkır & Mahmud Sami Özgür, 2021. "Two-Phase Heuristic Algorithm for Integrated Airline Fleet Assignment and Routing Problem," Energies, MDPI, vol. 14(11), pages 1-10, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3327-:d:569632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3327/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3327/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamili, Amin, 2017. "A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 21-30.
    2. Yan, Shangyao & Tang, Ching-Hui & Fu, Tseng-Chih, 2008. "An airline scheduling model and solution algorithms under stochastic demands," European Journal of Operational Research, Elsevier, vol. 190(1), pages 22-39, October.
    3. Yan, Shangyao & Chen, Shin-Chin & Chen, Chia-Hung, 2006. "Air cargo fleet routing and timetable setting with multiple on-time demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(5), pages 409-430, September.
    4. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    5. Russell A. Rushmeier & Spyridon A. Kontogiorgis, 1997. "Advances in the Optimization of Airline Fleet Assignment," Transportation Science, INFORMS, vol. 31(2), pages 159-169, May.
    6. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    7. Cadarso, Luis & Marín, à ngel, 2013. "Robust passenger oriented timetable and fleet assignment integration in airline planning," Journal of Air Transport Management, Elsevier, vol. 26(C), pages 44-49.
    8. Jeph Abara, 1989. "Applying Integer Linear Programming to the Fleet Assignment Problem," Interfaces, INFORMS, vol. 19(4), pages 20-28, August.
    9. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    2. Kenan, Nabil & Diabat, Ali & Jebali, Aida, 2018. "Codeshare agreements in the integrated aircraft routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 272-295.
    3. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    4. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2010. "Integrated Airline Schedule Design and Fleet Assignment: Polyhedral Analysis and Benders' Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 500-513, November.
    5. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    6. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    7. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    8. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    9. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    10. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    11. Ming Liu & Yueyu Ding & Lihua Sun & Runchun Zhang & Yue Dong & Zihan Zhao & Yiting Wang & Chaoran Liu, 2023. "Green Airline-Fleet Assignment with Uncertain Passenger Demand and Fuel Price," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    12. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    13. Keji Wei & Vikrant Vaze, 2020. "Airline Timetable Development and Fleet Assignment Incorporating Passenger Choice," Transportation Science, INFORMS, vol. 54(1), pages 139-163, January.
    14. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    15. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.
    16. Saravanan Venkatachalam & Suresh Acharya & Kenji Oba & Yoshinari Nakayama, 2020. "Prescriptive Analytics for Swapping Aircraft Assignments at All Nippon Airways," Interfaces, INFORMS, vol. 50(2), pages 99-111, March.
    17. Hanif D. Sherali & Xiaomei Zhu, 2008. "Two-Stage Fleet Assignment Model Considering Stochastic Passenger Demands," Operations Research, INFORMS, vol. 56(2), pages 383-399, April.
    18. Abdelghany, Ahmed & Abdelghany, Khaled & Azadian, Farshid, 2023. "The airline seat capacity allocation problem: An expected marginal profit approach," Journal of Air Transport Management, Elsevier, vol. 112(C).
    19. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    20. Haouari, Mohamed & Aissaoui, Najla & Mansour, Farah Zeghal, 2009. "Network flow-based approaches for integrated aircraft fleeting and routing," European Journal of Operational Research, Elsevier, vol. 193(2), pages 591-599, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3327-:d:569632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.