IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3311-d569213.html
   My bibliography  Save this article

Experimental Data and Simulations of Performance and Thermal Comfort in a Typical Mediterranean House

Author

Listed:
  • Víctor Pérez-Andreu

    (Modelización y Análisis Energético y Estructural en Edificación y Obra Civil Group, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain)

  • Carolina Aparicio-Fernández

    (Centro de Investigación de Tecnología de la Edificación, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • José-Luis Vivancos

    (Project Management, Innovation and Sustainability Research Center (PRINS), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Javier Cárcel-Carrasco

    (Institute of Materials Technology, Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.

Suggested Citation

  • Víctor Pérez-Andreu & Carolina Aparicio-Fernández & José-Luis Vivancos & Javier Cárcel-Carrasco, 2021. "Experimental Data and Simulations of Performance and Thermal Comfort in a Typical Mediterranean House," Energies, MDPI, vol. 14(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3311-:d:569213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ilaria Ballarini & Andrea Costantino & Enrico Fabrizio & Vincenzo Corrado, 2020. "A Methodology to Investigate the Deviations between Simple and Detailed Dynamic Methods for the Building Energy Performance Assessment," Energies, MDPI, vol. 13(23), pages 1-19, November.
    2. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    3. Carolina Aparicio-Fernández & José-Luis Vivancos & Paula Cosar-Jorda & Richard A. Buswell, 2019. "Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation," Energies, MDPI, vol. 12(17), pages 1-13, August.
    4. Camila Gregório-Atem & Carolina Aparicio-Fernández & Helena Coch & José-Luis Vivancos, 2020. "Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Malça & Ricardo M. S. F. Almeida & José A. R. Mendes Silva, 2023. "Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    2. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    3. Shaik, Saleem, 2024. "Contribution of climate change to sector-source energy demand," Energy, Elsevier, vol. 294(C).
    4. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    5. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    6. José Luis Fuentes-Bargues & José-Luis Vivancos & Pablo Ferrer-Gisbert & Miguel Ángel Gimeno-Guillem, 2020. "Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings," Sustainability, MDPI, vol. 12(13), pages 1-23, July.
    7. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    8. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    9. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    10. Dawei Xia & Weien Xie & Jialiang Guo & Yukai Zou & Zhuotong Wu & Yini Fan, 2023. "Building Thermal and Energy Performance of Subtropical Terraced Houses under Future Climate Uncertainty," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    11. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    12. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    13. Daniel Sánchez-García & David Bienvenido-Huertas & Mónica Tristancho-Carvajal & Carlos Rubio-Bellido, 2019. "Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    14. Cristina Baglivo, 2021. "Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    15. Es-sakali, Niima & Charai, Mouatassim & Idrissi Kaitouni, Samir & Ait Laasri, Imad & Mghazli, Mohamed Oualid & Cherkaoui, Moha & Pfafferott, Jens & Ukjoo, Sung, 2023. "Energy efficiency and hygrothermal performance of hemp clay walls for Moroccan residential buildings: An integrated lab-scale, in-situ and simulation-based assessment," Applied Energy, Elsevier, vol. 352(C).
    16. Olivier Dartevelle & Sergio Altomonte & Gabrielle Masy & Erwin Mlecnik & Geoffrey van Moeseke, 2022. "Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium)," Energies, MDPI, vol. 15(7), pages 1-13, March.
    17. Serena Summa & Giada Remia & Costanzo Di Perna, 2022. "Comparative and Sensitivity Analysis of Numerical Methods for the Discretization of Opaque Structures and Parameters of Glass Components for EN ISO 52016-1," Energies, MDPI, vol. 15(3), pages 1-23, January.
    18. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.
    19. Battista, Gabriele & de Lieto Vollaro, Emanuele & Ocłoń, Paweł & Vallati, Andrea, 2021. "Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand," Energy, Elsevier, vol. 226(C).
    20. Ateekh Ur Rehman & Mustufa Haider Abidi & Usama Umer & Yusuf Siraj Usmani, 2019. "Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations," Sustainability, MDPI, vol. 11(21), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3311-:d:569213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.