IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923013314.html
   My bibliography  Save this article

Energy efficiency and hygrothermal performance of hemp clay walls for Moroccan residential buildings: An integrated lab-scale, in-situ and simulation-based assessment

Author

Listed:
  • Es-sakali, Niima
  • Charai, Mouatassim
  • Idrissi Kaitouni, Samir
  • Ait Laasri, Imad
  • Mghazli, Mohamed Oualid
  • Cherkaoui, Moha
  • Pfafferott, Jens
  • Ukjoo, Sung

Abstract

Hemp-based building envelopes have gained significant popularity in developed countries, and now the trend of constructing houses with hemp-clay blocks is spreading to developing countries like Morocco. Investigating the hygrothermal behavior of such structures under actual climate conditions is essential for advancing and promoting this sustainable practice. This paper presents an in-depth experimental characterization of a commercial hemp-clay brick that has been exposed to the outdoor environment for four years, in addition to field measurements on a building scale demonstration prototype. Additionally, the study simulates 17 representative cities to assess the hygrothermal performance and energy-saving potential in each of Morocco's six existing climate zones, using the EnergyPlus engine. The experimental campaign's findings demonstrate excellent indoor air temperature and relative humidity regulation within the hemp-clay wall building, leading to satisfactory levels of thermal comfort within hemp-clay wall buildings. This is attributed to the material's good thermal conductivity and excellent moisture buffering capacity (found to be 0.31 W/mK and 2.25 g/m2%RH), respectively). The energy simulation findings also point to significant energy savings, with cooling and heating energy reductions ranging from 27.7% to 47.5% and 33.7% to 79.8%, respectively, as compared to traditional Moroccan buildings.

Suggested Citation

  • Es-sakali, Niima & Charai, Mouatassim & Idrissi Kaitouni, Samir & Ait Laasri, Imad & Mghazli, Mohamed Oualid & Cherkaoui, Moha & Pfafferott, Jens & Ukjoo, Sung, 2023. "Energy efficiency and hygrothermal performance of hemp clay walls for Moroccan residential buildings: An integrated lab-scale, in-situ and simulation-based assessment," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013314
    DOI: 10.1016/j.apenergy.2023.121967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres-Rivas, Alba & Palumbo, Mariana & Haddad, Assed & Cabeza, Luisa F. & Jiménez, Laureano & Boer, Dieter, 2018. "Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk," Applied Energy, Elsevier, vol. 224(C), pages 602-614.
    2. Ilaria Ballarini & Andrea Costantino & Enrico Fabrizio & Vincenzo Corrado, 2020. "A Methodology to Investigate the Deviations between Simple and Detailed Dynamic Methods for the Building Energy Performance Assessment," Energies, MDPI, vol. 13(23), pages 1-19, November.
    3. Galimshina, Alina & Moustapha, Maliki & Hollberg, Alexander & Padey, Pierryves & Lasvaux, Sébastien & Sudret, Bruno & Habert, Guillaume, 2022. "Bio-based materials as a robust solution for building renovation: A case study," Applied Energy, Elsevier, vol. 316(C).
    4. Michał Kubiś & Piotr Łapka & Łukasz Cieślikiewicz & Genadijs Sahmenko & Maris Sinka & Diana Bajare, 2022. "Analysis of the Thermal Conductivity of a Bio-Based Composite Made of Hemp Shives and a Magnesium Binder," Energies, MDPI, vol. 15(15), pages 1-11, July.
    5. Han, Yongming & Li, Jingze & Lou, Xiaoyi & Fan, Chenyu & Geng, Zhiqiang, 2022. "Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient," Applied Energy, Elsevier, vol. 309(C).
    6. Liu, Lu & Fan, Xiaoqiao & Zhang, Yuang & Zhang, Shufen & Wang, Wentao & Jin, Xin & Tang, Bingtao, 2020. "Novel bio-based phase change materials with high enthalpy for thermal energy storage," Applied Energy, Elsevier, vol. 268(C).
    7. Lee, J.W. & Jung, H.J. & Park, J.Y. & Lee, J.B. & Yoon, Y., 2013. "Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements," Renewable Energy, Elsevier, vol. 50(C), pages 522-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ait Laasri, Imad & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Energy performance assessment of a novel enhanced solar thermal system with topology optimized latent heat thermal energy storage unit for domestic water heating," Renewable Energy, Elsevier, vol. 224(C).
    2. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    2. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    3. Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
    4. Haibo Yu & Hui Zhang & Xiaolin Han & Ningcheng Gao & Zikang Ke & Junle Yan, 2023. "An Empirical Study of a Passive Exterior Window for an Office Building in the Context of Ultra-Low Energy," Sustainability, MDPI, vol. 15(17), pages 1-23, September.
    5. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    6. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
    7. Ángel Benigno González-Avilés & Carlos Pérez-Carramiñana & Antonio Galiano-Garrigós & Fernando Ibarra-Coves & Claudia Lozano-Romero, 2022. "Analysis of the Energy Efficiency of Le Corbusier’s Dwellings: The Cité Frugès, an Opportunity to Reuse Garden Cities Designed for Healthy and Working Life," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    8. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    9. Forde, Joe & Hopfe, Christina J. & McLeod, Robert S. & Evins, Ralph, 2020. "Temporal optimization for affordable and resilient Passivhaus dwellings in the social housing sector," Applied Energy, Elsevier, vol. 261(C).
    10. Ju, Liwei & Lu, Xiaolong & Yang, Shenbo & Li, Gen & Fan, Wei & Pan, Yushu & Qiao, Huiting, 2022. "A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response," Applied Energy, Elsevier, vol. 327(C).
    11. Larrea-Sáez, Lorena & Muñoz, Enrique & Cuevas, Cristian & Casas-Ledón, Yannay, 2024. "Optimizing insulation and heating systems for social housing in Chile: Insights for sustainable energy policies," Energy, Elsevier, vol. 290(C).
    12. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    13. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    14. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    15. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    16. Mushk Bughio & Muhammad Shoaib Khan & Waqas Ahmed Mahar & Thorsten Schuetze, 2021. "Impact of Passive Energy Efficiency Measures on Cooling Energy Demand in an Architectural Campus Building in Karachi, Pakistan," Sustainability, MDPI, vol. 13(13), pages 1-35, June.
    17. Jaewook Lee & Jiyoung Park, 2018. "Phase Change Material (PCM) Application in a Modernized Korean Traditional House (Hanok)," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    18. Dai, Baolian & Tong, Yan & Hu, Qi & Chen, Zheng, 2022. "Characteristics of thermal stratification and its effects on HVAC energy consumption for an atrium building in south China," Energy, Elsevier, vol. 249(C).
    19. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    20. Zhang, Chengyan & Ji, Jie & Ke, Wei & Tang, Yayun, 2024. "Comprehensive performance investigation of a novel thermal catalytic semi-transparent PV double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.