IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3292-d568891.html
   My bibliography  Save this article

Comparative Analysis of Meat Bone Meal and Meat Bone Combustion Using the Life Cycle Assessment Method

Author

Listed:
  • Zygmunt Kowalski

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, 31-261 Cracow, Poland)

  • Magdalena Muradin

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, 31-261 Cracow, Poland
    Institute of Management, Poznan University of Economics and Business, 61-875 Poznan, Poland)

  • Joanna Kulczycka

    (Faculty of Management, AGH University of Science and Technology, 30-067 Cracow, Poland)

  • Agnieszka Makara

    (Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland)

Abstract

LCA analysis with 16 impact categories was used for the comparison of two developed combustion technologies: Scenario I—the combustion of meat bone meal produced from all types of meat waste; Scenario II—the combustion of meat bones from the production of meat products. The key hotspots determined were electricity and natural gas consumption, covering as much as 98.2% of the total influence on the environment in Scenario I and 99.3% in Scenario II. Without taking into account the environmental burdens avoided, the LCA analysis showed that Scenario I was assessed to have 71.2% less environmental impact. The avoided burdens approach changed the relationship between the two scenarios. The absolute value score for the overall environmental impact shows that Scenario II can be more environmentally beneficial than Scenario I; however, Scenario I allowed the elimination of all types of Polish meat waste, and Scenario II could only be carried out in meat production units for the elimination of meat bone waste and by-products from meat processing (i.e., 23% of the total meat waste produced in Poland).

Suggested Citation

  • Zygmunt Kowalski & Magdalena Muradin & Joanna Kulczycka & Agnieszka Makara, 2021. "Comparative Analysis of Meat Bone Meal and Meat Bone Combustion Using the Life Cycle Assessment Method," Energies, MDPI, vol. 14(11), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3292-:d:568891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Zhongxin & Lagerkvist, Anders, 2011. "Phosphorus recovery from the biomass ash: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3588-3602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zygmunt Kowalski & Agnieszka Makara & Agnieszka Generowicz & Józef Ciuła, 2023. "Improving the Quality of Hydroxyapatite Ashes from the Combustion of Meat-Bone Meal in an Industrial Rotary Kiln," Energies, MDPI, vol. 16(16), pages 1-14, August.
    2. Viktoria Mannheim & Judit Lovasné Avató, 2023. "Life-Cycle Assessments of Meat-Free and Meat-Containing Diets by Integrating Sustainability and Lean: Meat-Free Dishes Are Sustainable," Sustainability, MDPI, vol. 15(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.
    3. Qi, Jianhui & Li, Hui & Han, Kuihua & Zuo, Qi & Gao, Jie & Wang, Qian & Lu, Chunmei, 2016. "Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass," Energy, Elsevier, vol. 102(C), pages 244-251.
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Biomass combustion systems: A review on the physical and chemical properties of the ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 235-242.
    5. Fonts, Isabel & Gea, Gloria & Azuara, Manuel & Ábrego, Javier & Arauzo, Jesús, 2012. "Sewage sludge pyrolysis for liquid production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2781-2805.
    6. Prestipino, M. & Galvagno, A. & Karlström, O. & Brink, A., 2018. "Energy conversion of agricultural biomass char: Steam gasification kinetics," Energy, Elsevier, vol. 161(C), pages 1055-1063.
    7. Marzena Smol & Michał Preisner & Augusto Bianchini & Jessica Rossi & Ludwig Hermann & Tanja Schaaf & Jolita Kruopienė & Kastytis Pamakštys & Maris Klavins & Ruta Ozola-Davidane & Daina Kalnina & Elina, 2020. "Strategies for Sustainable and Circular Management of Phosphorus in the Baltic Sea Region: The Holistic Approach of the InPhos Project," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    8. Liu, Lang & Ren, Shan & Yang, Jian & Jiang, Donghai & Guo, Junjiang & Pu, Yubao & Meng, Xianpiao, 2022. "Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue," Energy, Elsevier, vol. 251(C).
    9. Marzieh Bagheri & Marcus Öhman & Elisabeth Wetterlund, 2022. "Techno-Economic Analysis of Scenarios on Energy and Phosphorus Recovery from Mono- and Co-Combustion of Municipal Sewage Sludge," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    10. Choudhary, Ankur & Kumar, Ashish & Kumar, Sudhir, 2020. "Techno-economic analysis, kinetics, global warming potential comparison and optimization of a pilot-scale unheated semi-continuous anaerobic reactor in a hilly area: For north Indian hilly states," Renewable Energy, Elsevier, vol. 155(C), pages 1181-1190.
    11. Raheem, Abdur & Hassan, Mohammad Yusri & Shakoor, Rabia, 2016. "Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 264-275.
    12. Thomas, Paul & Soren, Nirmala & Rumjit, Nelson Pynadathu & George James, Jake & Saravanakumar, M.P., 2017. "Biomass resources and potential of anaerobic digestion in Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 718-730.
    13. Mutair A. Akanji & Munir Ahmad & Mohammad I. Al-Wabel & Abdullah S. F. Al-Farraj, 2022. "Soil Phosphorus Fractionation and Bio-Availability in a Calcareous Soil as Affected by Conocarpus Waste Biochar and Its Acidified Derivative," Agriculture, MDPI, vol. 12(12), pages 1-35, December.
    14. Chojnacka, K. & Gorazda, K. & Witek-Krowiak, A. & Moustakas, K., 2019. "Recovery of fertilizer nutrients from materials - Contradictions, mistakes and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 485-498.
    15. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3292-:d:568891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.