IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2157-d1003724.html
   My bibliography  Save this article

Soil Phosphorus Fractionation and Bio-Availability in a Calcareous Soil as Affected by Conocarpus Waste Biochar and Its Acidified Derivative

Author

Listed:
  • Mutair A. Akanji

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Munir Ahmad

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Mohammad I. Al-Wabel

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Abdullah S. F. Al-Farraj

    (Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

Abstract

Biochar possesses more profound effects on the availability of soil P in acidic soil than in alkaline and/or calcareous soil, mainly due to P fixation. Therefore, biochar derived from Conocarpus waste (BC) was acidified with sulfuric acid to produce acidified biochar (ABC) and incorporated into a calcareous soil planted with alfalfa in order to investigate P availability and fractionation. Additionally, the changes in some other soil chemical properties were investigated. Both BC and ABC were applied at three rates (0%, 2.5%, and 5%) along with P fertilizer application at four rates (0, 75, 150 and 300 ppm). The results showed that acidification remarkably reduced the pH of ABC by 6.84 units. The application of ABC considerably lowered the soil pH; however, it did not significantly increase P availability in the studied soil. Furthermore, BC, especially at a higher application rate, increased the extractable soil K. Similarly, the amendments increased the soil cation exchangeable capacity (CEC) and soil organic matter (OM), where a profound increase was observed at a higher application rate in the case of soil OM. Similarly, soil-available micronutrients were increased over the control, where a more profound increase was observed in soils treated with ABC. The NaHCO 3 − P (exchangeable) fraction increased with increasing fertilizer application rate while the residual–P decreased. Therefore, BC and ABC could be used to improve soil quality and enhance soil nutrient availability. However, further studies are required on how to significantly improve soil available P in calcareous soil.

Suggested Citation

  • Mutair A. Akanji & Munir Ahmad & Mohammad I. Al-Wabel & Abdullah S. F. Al-Farraj, 2022. "Soil Phosphorus Fractionation and Bio-Availability in a Calcareous Soil as Affected by Conocarpus Waste Biochar and Its Acidified Derivative," Agriculture, MDPI, vol. 12(12), pages 1-35, December.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2157-:d:1003724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogdan Saletnik & Grzegorz Zagula & Marcin Bajcar & Maria Czernicka & Czeslaw Puchalski, 2018. "Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus)," Energies, MDPI, vol. 11(10), pages 1-24, September.
    2. Tan, Zhongxin & Lagerkvist, Anders, 2011. "Phosphorus recovery from the biomass ash: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3588-3602.
    3. Mahmoud El-Sharkawy & Ahmed H. El-Naggar & Arwa Abdulkreem AL-Huqail & Adel M. Ghoneim, 2022. "Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    4. Mutair A. Akanji & Adel R. A. Usman & Mohammad I. Al-Wabel, 2021. "Influence of Acidified Biochar on CO 2 –C Efflux and Micronutrient Availability in an Alkaline Sandy Soil," Sustainability, MDPI, vol. 13(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basma Baccari & Abdelmajid Krouma, 2023. "Rhizosphere Acidification Determines Phosphorus Availability in Calcareous Soil and Influences Faba Bean ( Vicia faba ) Tolerance to P Deficiency," Sustainability, MDPI, vol. 15(7), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.
    3. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    4. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    5. Qi, Jianhui & Li, Hui & Han, Kuihua & Zuo, Qi & Gao, Jie & Wang, Qian & Lu, Chunmei, 2016. "Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass," Energy, Elsevier, vol. 102(C), pages 244-251.
    6. Hanuman Singh Jatav & Vishnu D. Rajput & Tatiana Minkina & Satish Kumar Singh & Sukirtee Chejara & Andrey Gorovtsov & Anatoly Barakhov & Tatiana Bauer & Svetlana Sushkova & Saglara Mandzhieva & Marina, 2021. "Sustainable Approach and Safe Use of Biochar and Its Possible Consequences," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    7. Elżbieta Jarosz-Krzemińska & Joanna Poluszyńska, 2020. "Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment," Energies, MDPI, vol. 13(18), pages 1-21, September.
    8. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Biomass combustion systems: A review on the physical and chemical properties of the ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 235-242.
    9. Fonts, Isabel & Gea, Gloria & Azuara, Manuel & Ábrego, Javier & Arauzo, Jesús, 2012. "Sewage sludge pyrolysis for liquid production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2781-2805.
    10. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "Study on the Possibilities of Natural Use of Ash Granulate Obtained from the Combustion of Pellets from Plant Biomass," Energies, MDPI, vol. 12(13), pages 1-19, July.
    11. Christof Lanzerstorfer, 2019. "Combustion of Miscanthus: Composition of the Ash by Particle Size," Energies, MDPI, vol. 12(1), pages 1-12, January.
    12. Liza Nuriati Lim Kim Choo & Osumanu Haruna Ahmed & Nik Muhamad Nik Majid & Zakry Fitri Abd Aziz, 2021. "Pineapple Residue Ash Reduces Carbon Dioxide and Nitrous Oxide Emissions in Pineapple Cultivation on Tropical Peat Soils at Saratok, Malaysia," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    13. Rabia Noor Enam & Muhammad Tahir & Huma Hasan Rizvi & Asim Rafique & Syed Muhammad Nabeel Mustafa, 2022. "A Sustainable Way to Generate Energy through Biomass Flash Pyrolysis in South Asia: A Green Energy Technology," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 274-279, September.
    14. Prestipino, M. & Galvagno, A. & Karlström, O. & Brink, A., 2018. "Energy conversion of agricultural biomass char: Steam gasification kinetics," Energy, Elsevier, vol. 161(C), pages 1055-1063.
    15. Mejdi Jeguirim & Lionel Limousy, 2019. "Biomass Chars: Elaboration, Characterization and Applications II," Energies, MDPI, vol. 12(3), pages 1-6, January.
    16. Roghayeh Mousavi & MirHassan Rasouli-Sadaghiani & Ebrahim Sepehr & Mohsen Barin & Ramesh Raju Vetukuri, 2023. "Improving Phosphorus Availability and Wheat Yield in Saline Soil of the Lake Urmia Basin through Enriched Biochar and Microbial Inoculation," Agriculture, MDPI, vol. 13(4), pages 1-16, March.
    17. Marzena Smol & Michał Preisner & Augusto Bianchini & Jessica Rossi & Ludwig Hermann & Tanja Schaaf & Jolita Kruopienė & Kastytis Pamakštys & Maris Klavins & Ruta Ozola-Davidane & Daina Kalnina & Elina, 2020. "Strategies for Sustainable and Circular Management of Phosphorus in the Baltic Sea Region: The Holistic Approach of the InPhos Project," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    18. Liu, Lang & Ren, Shan & Yang, Jian & Jiang, Donghai & Guo, Junjiang & Pu, Yubao & Meng, Xianpiao, 2022. "Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue," Energy, Elsevier, vol. 251(C).
    19. Tianyou Chen & Honglei Jia & Shengwei Zhang & Xumin Sun & Yuqiu Song & Hongfang Yuan, 2020. "Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel," Energies, MDPI, vol. 13(3), pages 1-21, February.
    20. Zygmunt Kowalski & Magdalena Muradin & Joanna Kulczycka & Agnieszka Makara, 2021. "Comparative Analysis of Meat Bone Meal and Meat Bone Combustion Using the Life Cycle Assessment Method," Energies, MDPI, vol. 14(11), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2157-:d:1003724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.