IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3213-d566041.html
   My bibliography  Save this article

Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli

Author

Listed:
  • Hao Wang

    (College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China
    MOE Key Laboratory of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Hui Zhang

    (College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Jun Li

    (College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Anming Chen

    (Sinopec Huadong Oilfield Service Corporation, Nanjing 210000, China)

  • Jun Liu

    (Sinopec Huadong Oilfield Service Corporation, Nanjing 210000, China)

  • Tengfei Sun

    (College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

  • Cong Lin

    (AVIC China Aero-Polytechnology Establishment, Beijing 100028, China)

Abstract

In the offshore industry, especially heavy oil thermal recovery wells, due to the great temperature difference between the low-temperature seawater and high-temperature heavy oil, it is easy to cause the temperature increase of annular fluid in the operation process which will result in the annular pressure buildup phenomenon (APB). The increase of annulus pressure may lead to the failure of the casing and wellbore integrity, which will seriously affect the normal production and lead to great economic loss. In order to study the formation of APB and provide a basis for the field operation design, a radial full-size physical experiment of APB was carried out in this work and an annular pressure prediction model in the presence of dissolved gas was proposed based on the experimental results. The verification and comparison analyses of the full-liquid model and the dissolved gas model were conducted with the experimental data. Furthermore, the sensitivity analysis of the influence of the dissolved gas volume fraction and casing deformation on APB was carried out. The results show that the prediction results calculated by the dissolved gas model are in good agreement with the experimental data and the prediction accuracy is higher than that of the full-liquid model. When the annular dissolved gas volume fraction is less than 0.1%, the full-liquid model can be used to simplify and approximate calculations. Ignoring casing deformation will produce prediction error in each annulus, which means this simplification should be used with extreme caution. This work provides a valuable experimental reference for the study of APB, as well as a novel model for APB prediction in the field.

Suggested Citation

  • Hao Wang & Hui Zhang & Jun Li & Anming Chen & Jun Liu & Tengfei Sun & Cong Lin, 2021. "Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli," Energies, MDPI, vol. 14(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3213-:d:566041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengcheng Tao & Eilis Rosenbaum & Barbara G. Kutchko & Mehrdad Massoudi, 2021. "A Brief Review of Gas Migration in Oilwell Cement Slurries," Energies, MDPI, vol. 14(9), pages 1-22, April.
    2. Yasaman Foolad & Majid Bizhani & Ian A. Frigaard, 2021. "A Comparative Study of Laminar-Turbulent Displacement in an Eccentric Annulus under Imposed Flow Rate and Imposed Pressure Drop Conditions," Energies, MDPI, vol. 14(6), pages 1-18, March.
    3. Sriniketh Sukumar & Ruud Weijermars & Ibere Alves & Sam Noynaert, 2019. "Analysis of Pressure Communication between the Austin Chalk and Eagle Ford Reservoirs during a Zipper Fracturing Operation," Energies, MDPI, vol. 12(8), pages 1-28, April.
    4. Chengcheng Tao & Barbara G. Kutchko & Eilis Rosenbaum & Mehrdad Massoudi, 2020. "A Review of Rheological Modeling of Cement Slurry in Oil Well Applications," Energies, MDPI, vol. 13(3), pages 1-55, January.
    5. Hanieh K. Foroushan & Bjørnar Lund & Jan David Ytrehus & Arild Saasen, 2021. "Cement Placement: An Overview of Fluid Displacement Techniques and Modelling," Energies, MDPI, vol. 14(3), pages 1-33, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timotheus K. T. Wolterbeek & Suzanne J. T. Hangx, 2021. "Remediation of Annular Gas Migration along Cemented Wellbores Using Reactive Mineral Fluids: Experimental Assessment of Sodium Bicarbonate and Sodium Silicate-Based Solutions," Energies, MDPI, vol. 14(22), pages 1-19, November.
    2. Kunhong Lv & Hao Huang & Xingqiang Zhong & Yian Tong & Xingjie Ling & Qiao Deng, 2021. "A Prediction Model of Pressure Loss of Cement Slurry in Deep-Water HTHP Directional Wells," Energies, MDPI, vol. 14(23), pages 1-15, December.
    3. Chengcheng Tao & Eilis Rosenbaum & Barbara G. Kutchko & Mehrdad Massoudi, 2021. "A Brief Review of Gas Migration in Oilwell Cement Slurries," Energies, MDPI, vol. 14(9), pages 1-22, April.
    4. Marcin Kremieniewski, 2020. "Influence of Graphene Oxide on Rheological Parameters of Cement Slurries," Energies, MDPI, vol. 13(20), pages 1-15, October.
    5. Marcin Kremieniewski & Rafał Wiśniowski & Stanisław Stryczek & Grzegorz Orłowicz, 2021. "Possibilities of Limiting Migration of Natural Gas in Boreholes in the Context of Laboratory Studies," Energies, MDPI, vol. 14(14), pages 1-13, July.
    6. Marcin Kremieniewski & Bartłomiej Jasiński & Grzegorz Zima & Łukasz Kut, 2021. "Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes," Energies, MDPI, vol. 14(12), pages 1-11, June.
    7. Fabio Fanari & Francesco Desogus & Efisio Antonio Scano & Gianluca Carboni & Massimiliano Grosso, 2020. "The Effect of the Relative Amount of Ingredients on the Rheological Properties of Semolina Doughs," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    8. Ruud Weijermars, 2020. "Optimization of Fracture Spacing and Well Spacing in Utica Shale Play Using Fast Analytical Flow-Cell Model (FCM) Calibrated with Numerical Reservoir Simulator," Energies, MDPI, vol. 13(24), pages 1-24, December.
    9. El Moçayd, Nabil & Seaid, Mohammed, 2021. "Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Mehrdad Massoudi, 2020. "Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications," Energies, MDPI, vol. 13(6), pages 1-4, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3213-:d:566041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.