IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8180-d696036.html
   My bibliography  Save this article

A Prediction Model of Pressure Loss of Cement Slurry in Deep-Water HTHP Directional Wells

Author

Listed:
  • Kunhong Lv

    (College of Petroleum Engineering, Yangtze University, Wuhan 430199, China)

  • Hao Huang

    (College of Petroleum Engineering, Yangtze University, Wuhan 430199, China)

  • Xingqiang Zhong

    (Zhanjiang Operation Company, CNOOC Petrochemicals Division, Zhanjiang 524000, China)

  • Yian Tong

    (Downhole Service Company, CNPC Chuanqing Drilling Engineering Co., Ltd., Chengdu 610052, China)

  • Xingjie Ling

    (College of Petroleum Engineering, Yangtze University, Wuhan 430199, China)

  • Qiao Deng

    (College of Petroleum Engineering, Yangtze University, Wuhan 430199, China)

Abstract

The exploitations of deep-water wells often use directional well drilling to reach the target layer. Affected by special environments in deep water, the prediction of pressure loss of cement slurry is particularly important. This paper presents a prediction model of pressure loss suitable for deep-water directional wells. This model takes the complex interaction between the temperature, pressure and hydration kinetics of cement slurry into account. Based on the initial and boundary conditions, the finite difference method is used to discretize and calculate the model to ensure the stability and convergence of the result calculated by this model. Finally, the calculation equation of the model is used to predict the transient temperature and pressure loss of Wells X1 and X2, and a comparison is made between the predicted value and the monitoring data. The comparison results show that the maximum error between the temperature and pressure predicted by the model and the field measured value is within 6%. Thus, this model is of high accuracy and can meet the needs of site construction. It is concluded that this result can provide reliable theoretical guidance for temperature and pressure prediction, as well as the anti-channeling design of HTHP directional wells.

Suggested Citation

  • Kunhong Lv & Hao Huang & Xingqiang Zhong & Yian Tong & Xingjie Ling & Qiao Deng, 2021. "A Prediction Model of Pressure Loss of Cement Slurry in Deep-Water HTHP Directional Wells," Energies, MDPI, vol. 14(23), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8180-:d:696036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengcheng Tao & Eilis Rosenbaum & Barbara G. Kutchko & Mehrdad Massoudi, 2021. "A Brief Review of Gas Migration in Oilwell Cement Slurries," Energies, MDPI, vol. 14(9), pages 1-22, April.
    2. Marcin Kremieniewski & Rafał Wiśniowski & Stanisław Stryczek & Grzegorz Orłowicz, 2021. "Possibilities of Limiting Migration of Natural Gas in Boreholes in the Context of Laboratory Studies," Energies, MDPI, vol. 14(14), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timotheus K. T. Wolterbeek & Suzanne J. T. Hangx, 2021. "Remediation of Annular Gas Migration along Cemented Wellbores Using Reactive Mineral Fluids: Experimental Assessment of Sodium Bicarbonate and Sodium Silicate-Based Solutions," Energies, MDPI, vol. 14(22), pages 1-19, November.
    2. Marcin Kremieniewski & Rafał Wiśniowski & Stanisław Stryczek & Grzegorz Orłowicz, 2021. "Possibilities of Limiting Migration of Natural Gas in Boreholes in the Context of Laboratory Studies," Energies, MDPI, vol. 14(14), pages 1-13, July.
    3. Marcin Kremieniewski & Sławomir Błaż & Stanisław Stryczek & Rafał Wiśniowski & Andrzej Gonet, 2021. "Effect of Cleaning the Annular Space on the Adhesion of the Cement Sheath to the Rock," Energies, MDPI, vol. 14(16), pages 1-15, August.
    4. Hao Wang & Hui Zhang & Jun Li & Anming Chen & Jun Liu & Tengfei Sun & Cong Lin, 2021. "Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli," Energies, MDPI, vol. 14(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8180-:d:696036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.