IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2705-d338842.html
   My bibliography  Save this article

The Effect of the Relative Amount of Ingredients on the Rheological Properties of Semolina Doughs

Author

Listed:
  • Fabio Fanari

    (Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09123 Cagliari, Italy)

  • Francesco Desogus

    (Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09123 Cagliari, Italy)

  • Efisio Antonio Scano

    (Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy)

  • Gianluca Carboni

    (Agris Sardegna, Agricultural Research Agency of Sardinia, 09123 Cagliari, Italy)

  • Massimiliano Grosso

    (Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09123 Cagliari, Italy)

Abstract

“Pani carasau” is a traditional Sardinian bread, made with re-milled durum wheat semolina, with a long shelf-life. The production process is highly energy consuming, but its automation can make it more energy-efficient and sustainable. This requires a deep knowledge of the rheological parameters of the doughs. This study investigated the rheological properties of doughs—prepared by mixing semolina with water, yeast, and salt—as a function of the relative amount of the ingredients. The rheological measurements were carried out by an Anton Paar MCR 102 rheometer, equipped with a plate–plate fixture. In more detail, frequency sweep and creep tests were performed. It was found that doughs obtained with different amounts of ingredients showed significant differences in the rheological responses. The addition of water led to a significant decrease in the viscosity and improved the deformability of the dough. In addition, the yeast addition produced a viscosity decrease, while the presence of salt produced an improvement of the three-dimensional gluten network characteristics and, consequently, of the strength of the dough. In addition to the production process of pani carasau, this work contributes to improving the general performance of the doughs used in the production of flour-and-semolina-based foods.

Suggested Citation

  • Fabio Fanari & Francesco Desogus & Efisio Antonio Scano & Gianluca Carboni & Massimiliano Grosso, 2020. "The Effect of the Relative Amount of Ingredients on the Rheological Properties of Semolina Doughs," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2705-:d:338842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Fanari & Gianluca Carboni & Massimiliano Grosso & Francesco Desogus, 2020. "Thermal Properties of Semolina Doughs with Different Relative Amount of Ingredients," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    2. Chengcheng Tao & Barbara G. Kutchko & Eilis Rosenbaum & Mehrdad Massoudi, 2020. "A Review of Rheological Modeling of Cement Slurry in Oil Well Applications," Energies, MDPI, vol. 13(3), pages 1-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengcheng Tao & Eilis Rosenbaum & Barbara G. Kutchko & Mehrdad Massoudi, 2021. "A Brief Review of Gas Migration in Oilwell Cement Slurries," Energies, MDPI, vol. 14(9), pages 1-22, April.
    2. Marcin Kremieniewski, 2020. "Influence of Graphene Oxide on Rheological Parameters of Cement Slurries," Energies, MDPI, vol. 13(20), pages 1-15, October.
    3. Marcin Kremieniewski & Bartłomiej Jasiński & Grzegorz Zima & Łukasz Kut, 2021. "Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes," Energies, MDPI, vol. 14(12), pages 1-11, June.
    4. El Moçayd, Nabil & Seaid, Mohammed, 2021. "Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Mehrdad Massoudi, 2020. "Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications," Energies, MDPI, vol. 13(6), pages 1-4, March.
    6. Hao Wang & Hui Zhang & Jun Li & Anming Chen & Jun Liu & Tengfei Sun & Cong Lin, 2021. "Study on Annular Pressure Buildup in Offshore Heavy Oil Thermal Recovery Wells Considering Dissolved Gas Contained in Annuli," Energies, MDPI, vol. 14(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2705-:d:338842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.