IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3184-d564979.html
   My bibliography  Save this article

Prospective Life Cycle Assessment: Effect of Electricity Decarbonization in Building Sector

Author

Listed:
  • Leslie Ayagapin

    (PIMENT Laboratory, Department of Building Sciences and Environment, University of Reunion Island, 97430 Le Tampon, France)

  • Jean Philippe Praene

    (PIMENT Laboratory, Department of Building Sciences and Environment, University of Reunion Island, 97430 Le Tampon, France)

  • Doorgeshwaree Jaggeshar

    (Department of the Chemical & Environmental Engineering, University of Mauritius Reduit, Moka 80837, Mauritius)

  • Dinesh Surroop

    (Department of the Chemical & Environmental Engineering, University of Mauritius Reduit, Moka 80837, Mauritius)

Abstract

The building sector is responsible for 43% of France’s final energy consumption and is strongly associated with a high environmental impact due to its high consumption of energy and natural resources. These impacts are significant in isolated islands. Due to its geographical isolation and an area of 2512 km 2 , Reunion Island has a heavily carbon-based economy with a high import rate of raw materials for the building sector. This study aimed to investigate the effect of electricity mix decarbonization on residential house environmental impact. The methodology consists of three parts: (i) evaluating environmental impacts of Single-Family Houses (SFH) using life cyce assessment(LCA), (ii) defining SFH typologies using the K-means clustering algorithm, and (iii) implementing energy scenario in LCA of SFH to assess decarbonization effect. The environmental results were particularly sensitive in the operational phase, with a decrease of 83% between 2020 to 2040 of the global warming potential (GWP). The structural phase highlights the weight of imports in the building sector, as a decrease of only 1% is observed. This study clearly shows the necessary energy transition for Reunion Island. In the structural phase, the study recommends that stakeholders reduce imports and increase the share of recovered materials to achieve a substantial reduction in impacts.

Suggested Citation

  • Leslie Ayagapin & Jean Philippe Praene & Doorgeshwaree Jaggeshar & Dinesh Surroop, 2021. "Prospective Life Cycle Assessment: Effect of Electricity Decarbonization in Building Sector," Energies, MDPI, vol. 14(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3184-:d:564979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    2. Selosse, Sandrine & Ricci, Olivia & Garabedian, Sabine & Maïzi, Nadia, 2018. "Exploring sustainable energy future in Reunion Island," Utilities Policy, Elsevier, vol. 55(C), pages 158-166.
    3. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    4. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    5. Leslie Ayagapin & Jean Philippe Praene, 2020. "Environmental Overcost of Single Family Houses in Insular Context: A Comparative LCA Study of Reunion Island and France," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    6. Sabine, Garabedian & Avotra, Narindranjanahary & Olivia, Ricci & Sandrine, Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Energy Policy, Elsevier, vol. 147(C).
    7. Sharma, Aashish & Saxena, Abhishek & Sethi, Muneesh & Shree, Venu & Varun, 2011. "Life cycle assessment of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 871-875, January.
    8. Ahmad Faiz Abd Rashid & Juferi Idris & Sumiani Yusoff, 2017. "Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment," Sustainability, MDPI, vol. 9(3), pages 1-15, February.
    9. Gerbaulet, C. & von Hirschhausen, C. & Kemfert, C. & Lorenz, C. & Oei, P.-Y., 2019. "European electricity sector decarbonization under different levels of foresight," Renewable Energy, Elsevier, vol. 141(C), pages 973-987.
    10. Bénard-Sora, Fiona & Praene, Jean Philippe, 2016. "Territorial analysis of energy consumption of a small remote island: Proposal for classification and highlighting consumption profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 636-648.
    11. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    12. Praene, Jean Philippe & Fakra, Damien Ali Hamada & Benard, Fiona & Ayagapin, Leslie & Rachadi, Mohamed Nasroudine Mohamed, 2021. "Comoros’s energy review for promoting renewable energy sources," Renewable Energy, Elsevier, vol. 169(C), pages 885-893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    2. Leslie Ayagapin & Jean Philippe Praene, 2020. "Environmental Overcost of Single Family Houses in Insular Context: A Comparative LCA Study of Reunion Island and France," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    3. Paulo Cezar Vitorio Junior & Víctor Yepes & Moacir Kripka, 2022. "Comparison of Brazilian Social Interest Housing Projects Considering Sustainability," IJERPH, MDPI, vol. 19(10), pages 1-21, May.
    4. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    5. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    6. Tilmann Rave, 2013. "Innovationsindikatoren zum globalen Klimaschutz – FuE-Ausgaben und Patente," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    7. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    8. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    9. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    10. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    11. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    12. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    13. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    14. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    15. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    16. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    17. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    18. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    19. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    20. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3184-:d:564979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.