IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8937-d435738.html
   My bibliography  Save this article

Environmental Overcost of Single Family Houses in Insular Context: A Comparative LCA Study of Reunion Island and France

Author

Listed:
  • Leslie Ayagapin

    (PIMENT Laboratory, University of la Réunion, 97430 Le Tampon, La Réunion, France
    These authors contributed equally to this work.)

  • Jean Philippe Praene

    (PIMENT Laboratory, University of la Réunion, 97430 Le Tampon, La Réunion, France
    These authors contributed equally to this work.)

Abstract

The building and public works sector is, in France as in Europe, a major consumer of raw materials for both the manufacture of products and the construction of buildings and structures. This sector has a direct impact on the natural and built environment. This effect is even more pronounced in the case of isolated territories, such as islands. The latter have their own constraints (geographical location, production of the local grid mix) and particularities: very small territory, massive importation of goods in all fields, such as food, automobile, building, and others). In this study, we focus on the building branch of the construction industry, which covers housing (single-family houses and apartment blocks). The study is based on the analysis of about twenty single-family houses built in metropolitan France and Reunion Island. The construction standards for these two regions comply with European standards (CE) and French regulations. However, in the case of Reunion Island, a tropical island, it applies in particular to the Thermal, Acoustic, and Ventilation Regulations for New Buildings in Overseas Departments and Regions (RTAA DROM). The approach that is used for the environmental assessment of single-family homes is the Life Cycle Assessment (LCA), from cradle to grave. The results initially showed that there is an additional environmental cost in the construction sector between France and Reunion Island. This is initially due to the choice of origin of materials and products, which can greatly contribute to the impacts of construction. Secondly, to the use of the countries’ electricity mix, which also contributes, in part, to the impact of the construction of these single-family homes during the assembly and transformation of the products. Finally, this additional cost also differs according to the transport used (sea, air, rail, road). For the Global Warming Potential (GWP) indicator, in our study we note that the additional environmental cost is 37% higher in Reunion Island. This figure explains the additional impact of the 218 kg- CO 2 eq / m 2 of built-up area built for Reunion Island. This study is one of the first analyses demonstrating the additional environmental cost that exists between mainland France and overseas France. Thus, the results demonstrate the importance of creating a specialized and regionalized database for the case of remote islands. Thus, this database would allow for professionals to have a precise environmental assessment, not on a national but on a regional scale. This document also provides a framework and guideline for policy decision-making in the overseas islands.

Suggested Citation

  • Leslie Ayagapin & Jean Philippe Praene, 2020. "Environmental Overcost of Single Family Houses in Insular Context: A Comparative LCA Study of Reunion Island and France," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8937-:d:435738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, Aashish & Saxena, Abhishek & Sethi, Muneesh & Shree, Venu & Varun, 2011. "Life cycle assessment of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 871-875, January.
    2. Ahmad Faiz Abd Rashid & Juferi Idris & Sumiani Yusoff, 2017. "Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment," Sustainability, MDPI, vol. 9(3), pages 1-15, February.
    3. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    4. Bénard-Sora, Fiona & Praene, Jean Philippe, 2016. "Territorial analysis of energy consumption of a small remote island: Proposal for classification and highlighting consumption profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 636-648.
    5. Schwartz, Yair & Raslan, Rokia & Mumovic, Dejan, 2016. "Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study," Energy, Elsevier, vol. 97(C), pages 58-68.
    6. Kamali, Mohammad & Hewage, Kasun, 2016. "Life cycle performance of modular buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1171-1183.
    7. Briguglio, Lino, 1995. "Small island developing states and their economic vulnerabilities," World Development, Elsevier, vol. 23(9), pages 1615-1632, September.
    8. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    9. Zhang, Xiaoling & Shen, Liyin & Zhang, Lei, 2013. "Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 160-169.
    10. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leslie Ayagapin & Jean Philippe Praene & Doorgeshwaree Jaggeshar & Dinesh Surroop, 2021. "Prospective Life Cycle Assessment: Effect of Electricity Decarbonization in Building Sector," Energies, MDPI, vol. 14(11), pages 1-17, May.
    2. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    2. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.
    3. Leslie Ayagapin & Jean Philippe Praene & Doorgeshwaree Jaggeshar & Dinesh Surroop, 2021. "Prospective Life Cycle Assessment: Effect of Electricity Decarbonization in Building Sector," Energies, MDPI, vol. 14(11), pages 1-17, May.
    4. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Pan, Wei & Li, Kaijian & Teng, Yue, 2018. "Rethinking system boundaries of the life cycle carbon emissions of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 379-390.
    6. Martínez-Rocamora, A. & Solís-Guzmán, J. & Marrero, M., 2016. "LCA databases focused on construction materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 565-573.
    7. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    8. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    9. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    10. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    11. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    12. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    13. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    14. Echarri-Iribarren, Victor & Echarri-Iribarren, Fernando & Rizo-Maestre, Carlos, 2019. "Ceramic panels versus aluminium in buildings: Energy consumption and environmental impact assessment with a new methodology," Applied Energy, Elsevier, vol. 233, pages 959-974.
    15. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    16. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    17. Marina Nikolić Topalović & Milenko Stanković & Goran Ćirović & Dragan Pamučar, 2018. "Comparison of the Applied Measures on the Simulated Scenarios for the Sustainable Building Construction through Carbon Footprint Emissions—Case Study of Building Construction in Serbia," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    18. Walzberg, Julien & Dandres, Thomas & Merveille, Nicolas & Cheriet, Mohamed & Samson, Réjean, 2019. "Assessing behavioural change with agent-based life cycle assessment: Application to smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 365-376.
    19. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8937-:d:435738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.