IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2854-d555393.html
   My bibliography  Save this article

PV Modules Interfacing Isolated Triple Active Bridge for Nanogrid Applications

Author

Listed:
  • Danilo Santoro

    (Department of Architecture and Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy)

  • Iñigo Kortabarria

    (Electronic Technology Department, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao, Spain)

  • Andrea Toscani

    (Department of Architecture and Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy)

  • Carlo Concari

    (Department of Architecture and Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy)

  • Paolo Cova

    (Department of Architecture and Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy)

  • Nicola Delmonte

    (Department of Architecture and Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy)

Abstract

DC nanogrid architectures with Photovoltaic (PV) modules are expected to grow significantly in the next decades. Therefore, the integration of multi-port power converters and high-frequency isolation links are of increasing interest. The Triple Active Bridge (TAB) topology shows interesting advantages in terms of isolation, Zero Voltage Switching (ZVS) over wide load and input voltage ranges and high frequency operation capability. Thus, controlling PV modules is not an easy task due to the complexity and control stability of the system. In fact, the TAB power transfer function has many degrees of freedom, and the relationship between any of two ports is always dependent on the third one. In this paper we analyze the interfacing of photovoltaic arrays to the TAB with different solar conditions. A simple but effective control solution is proposed, which can be implemented through general purpose microcontrollers. The TAB is applied to an islanded DC nanogrid, which can be useful and readily implemented in locations where the utility grid is not available or reliable, and applications where isolation is required as for example More Electric Aircraft (MEA). Different conditions have been simulated and the control loops are proved for a reliable bus voltage control on the load side and a good maximum power point tracking (MPPT).

Suggested Citation

  • Danilo Santoro & Iñigo Kortabarria & Andrea Toscani & Carlo Concari & Paolo Cova & Nicola Delmonte, 2021. "PV Modules Interfacing Isolated Triple Active Bridge for Nanogrid Applications," Energies, MDPI, vol. 14(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2854-:d:555393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peyman Koohi & Alan J. Watson & Jon C. Clare & Thiago Batista Soeiro & Patrick W. Wheeler, 2023. "A Survey on Multi-Active Bridge DC-DC Converters: Power Flow Decoupling Techniques, Applications, and Challenges," Energies, MDPI, vol. 16(16), pages 1-47, August.
    2. Danilo Santoro & Nicola Delmonte & Marco Simonazzi & Andrea Toscani & Nicholas Rocchi & Giovanna Sozzi & Paolo Cova & Roberto Menozzi, 2023. "Local Power Distribution—A Review of Nanogrid Architectures, Control Strategies, and Converters," Sustainability, MDPI, vol. 15(3), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    2. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    3. Lucas V. Bellinaso & Edivan L. Carvalho & Rafael Cardoso & Leandro Michels, 2021. "Price-Response Matrices Design Methodology for Electrical Energy Management Systems Based on DC Bus Signalling," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Muhammad Saad & Yongfeng Ju & Husan Ali & Sami Ullah Jan & Dawar Awan & Shahbaz Khan & Abdul Wadood & Bakht Muhammad Khan & Akhtar Ali & Tahir Khurshaid, 2021. "Behavioral Modeling Paradigm for DC Nanogrid Based Distributed Energy Systems," Energies, MDPI, vol. 14(23), pages 1-20, November.
    5. Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.
    6. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    7. Saad, Ahmed A. & Faddel, Samy & Mohammed, Osama, 2019. "A secured distributed control system for future interconnected smart grids," Applied Energy, Elsevier, vol. 243(C), pages 57-70.
    8. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    9. Gabriel Santos & Tiago Pinto & Zita Vale & Rui Carvalho & Brígida Teixeira & Carlos Ramos, 2021. "Upgrading BRICKS—The Context-Aware Semantic Rule-Based System for Intelligent Building Energy and Security Management," Energies, MDPI, vol. 14(15), pages 1-14, July.
    10. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    11. Burgio, Alessandro & Menniti, Daniele & Sorrentino, Nicola & Pinnarelli, Anna & Motta, Michele, 2018. "A compact nanogrid for home applications with a behaviour-tree-based central controller," Applied Energy, Elsevier, vol. 225(C), pages 14-26.
    12. Yerasimos Yerasimou & Marios Kynigos & Venizelos Efthymiou & George E. Georghiou, 2021. "Design of a Smart Nanogrid for Increasing Energy Efficiency of Buildings," Energies, MDPI, vol. 14(12), pages 1-19, June.
    13. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Yim, Jaeyun & You, Sesun & Blaabjerg, Frede & Lee, Youngwoo & Gui, Yonghao & Kim, Wonhee, 2024. "Energy management systems for forecasted demand error compensation using hybrid energy storage system in nanogrid," Renewable Energy, Elsevier, vol. 221(C).
    15. Sadegh Modarresi, M. & Abada, Bilal & Sivaranjani, S. & Xie, Le & Chellam, Shankararaman, 2020. "Planning of survivable nano-grids through jointly optimized water and electricity: The case of Colonias at the Texas-Mexico border," Applied Energy, Elsevier, vol. 278(C).
    16. Kermani, Mostafa & Adelmanesh, Behin & Shirdare, Erfan & Sima, Catalina Alexandra & Carnì, Domenico Luca & Martirano, Luigi, 2021. "Intelligent energy management based on SCADA system in a real Microgrid for smart building applications," Renewable Energy, Elsevier, vol. 171(C), pages 1115-1127.
    17. Jakob Nömm & Sarah K. Rönnberg & Math H. J. Bollen, 2018. "An Analysis of Frequency Variations and its Implications on Connected Equipment for a Nanogrid during Islanded Operation," Energies, MDPI, vol. 11(9), pages 1-13, September.
    18. Alam, Muhammad Raisul & St-Hilaire, Marc & Kunz, Thomas, 2019. "Peer-to-peer energy trading among smart homes," Applied Energy, Elsevier, vol. 238(C), pages 1434-1443.
    19. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.
    20. Saif Jamal & Nadia M. L. Tan & Jagadeesh Pasupuleti, 2021. "A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications," Sustainability, MDPI, vol. 13(18), pages 1-31, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2854-:d:555393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.